(2009SGR116) Governments, and the ICREA Foundation for
financial support.
Notes and references
1 Modern Reduction Methods, ed. P. G. Andersson and I. J. Munslow,
Wiley-VCH, Weinheim, 2008.
2 See for example: (a) C. Wang, X. Wu and J. Xiao, Chem.–Asian J.,
2008, 3, 1750; (b) S. Gladiali and E. Alberico, Chem. Soc. Rev.,
2006, 35, 226; (c) K. Everaere, A. Mortreux and J.-F. Carpentier,
Adv. Synth. Catal., 2003, 345, 67; (d) T. Ohkuma and R. Noyori, in
Comprehensive Asymmetric Catalysis I–III, ed. E. N. Jacobsen,
A. Pfaltz and H. Yamamoto, Springer, Berlin, 1999, vol. 1, p. 199;
(e) M. J. Palmer and M. Wills, Tetrahedron: Asymmetry, 1999,
10, 2045.
3 S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1995, 117, 7562.
Fig. 3 Selected asymmetric transfer hydrogenation results. Reaction
conditions: 0.25 mol% [RuCl2(p-cymene)]2, 0.55 mol% L1, 1 mmol
substrate, 3 h at room temperature. a1 mol% of [RuCl2(p-cymene)]2, 24 h.
4 Selected recent examples: (a) F. K. Cheung, C. Lin, F. Minissi,
A. L. Criville, M. A. Graham, D. J. Fox and M. Wills, Org. Lett.,
2007, 9, 4659; (b) N. A. Cortez, G. Aguirre, M. Parra-Hake and
R. Somanathan, Tetrahedron Lett., 2007, 48, 4335; (c) J. Canivet
and G. Suss-Fink, Green Chem., 2007, 9, 391; (d) L. Li, J. Wu,
F. Wang, J. Liao, H. Zhang, C. Lian, J. Zhu and J. Deng, Green
Chem., 2007, 9, 23; (e) D. S. Matharu, D. J. Morris, G. J. Clarkson
and M. Wills, Chem. Commun., 2006, 3232; (f) A. M. Hayes,
D. J. Morris, G. J. Clarkson and M. Wills, J. Am. Chem. Soc.,
2005, 127, 7318; (g) F. Wang, H. Liu, L. Cun, J. Zhu, J. Deng and
Y. Jiang, J. Org. Chem., 2005, 70, 9424; (h) X. Wu, D. Vinci,
T. Ikariya and J. Xiao, Chem. Commun., 2005, 4447;
(i) J. Hannedouche, G. J. Clarkson and M. Wills, J. Am. Chem.
Soc., 2004, 126, 986; (j) Y. Ma, H. Liu, L. Chen, X. Cui, J. Zhu and
J. Deng, Org. Lett., 2003, 5, 2103.
5 See for example: (a) S. J. Nordin, P. Roth, T. Tarnai, D. A. Alonso,
P. Brandt and P. G. Andersson, Chem.–Eur. J., 2001, 7, 1431;
(b) D. A. Alonso, S. J. Nordin, P. Roth, T. Tarnai, P. G. Andersson,
M. Thommen and U. Pittelkow, J. Org. Chem., 2000, 65, 3116;
(c) A. Schlatter and W.-D. Woggon, Adv. Synth. Catal., 2008,
350, 995; (d) A. Schlatter, M. K. Kundu and W.-D. Woggon,
Angew. Chem., Int. Ed., 2004, 43, 6731.
or L9, respectively, efficiently catalyze the ATH of several
other aryl–alkyl ketones. The results show that the catalytic
performance (activity and enantioselectivity) is not affected
by the steric and electronic properties of the aryl group, except
for substrates S5, S9 and S12, which required higher catalyst
loadings (1 mol% of [RuCl2(p-cymene)]2) to achieve good
conversions. This behavior contrasts with the electronic and
steric effect on enantioselectivity observed for previous pseudo-
dipeptide ligands.9 Furthermore, enantioselectivities were
excellent (499%) in all cases, surpassing the enantioselectivities
obtained with previous successful pseudo-dipeptide ligands.9 The
carbohydrate-functionalized pseudo-dipeptides represent a power-
ful ligand library that provides the highest levels of enantio-
selectivity (499%) for a wide range of aryl–alkyl ketones.
In summary, we have successfully designed and evaluated a
new pseudo-dipeptide ligand library in the Ru-catalyzed ATH
of several ketones. The ligand library is based on the combi-
nation of various N-Boc-protected a-amino acids and a sugar
amino alcohol unit. Interestingly, we have demonstrated that
the introduction of a furanoside aminosugar moiety into the
ligand design is highly advantageous and it efficiently transfers
the chiral information to the products (ee’s ranging from 98%
to 499% in the reduction of a range of ketones). In contrast
to previous successful pseudo-dipeptides, the enantioselectivity
is exclusively controlled by the sugar moiety which enables the
use of inexpensive achiral or racemic a-amino acid derivatives.
Moreover, catalysts formed with the carbohydrate-based pseudo-
dipeptides showed a higher degree of substrate versatility than
the corresponding pseudo-dipeptide analogues 1. These novel
carbohydrate pseudo-dipeptide compounds constitute there-
fore an exceptional ligand system that favorably competes
in terms of enantioselectivity with other successful catalytic
systems including enzymatic kinetic resolution (KR) and
dynamic kinetic resolution (DKR).2,13 Because of the modular
construction of these carbohydrate-based ligands, structural
diversity is easy to achieve, so activities and enantioselectivities
can be maximized for other substrates as required. Further
studies of this kind, as well as mechanistic studies, are currently
underway.
6 W. Baratta, M. Bosco, G. Chelucci, A. Del Zotto, K. Siega,
M. Toniutti, E. Zangrando and P. Rigo, Organometallics, 2006,
25, 4611.
7 For a recent example of a phosphine-based catalyst, see; M. T. Reetz
and X. Li, J. Am. Chem. Soc., 2006, 128, 1044.
8 (a) C. P. Casey and H. Guan, J. Am. Chem. Soc., 2007, 129, 5816;
(b) S. Zhou, S. Fleischer, K. Junge, S. Das, D. Addis and M. Beller,
Angew. Chem., Int. Ed., 2010, 49, 8121; (c) A. Naik, T. Maji and
O. Reiser, Chem. Commun., 2010, 46, 4475; (d) A. Mikhailine,
A. L. Lough and R. H. Morris, J. Am. Chem. Soc., 2009, 131, 1394.
9 (a) I. M. Pastor, P. Vastila and H. Adolfsson, Chem. Commun.,
2002, 2046; (b) I. M. Pastor, P. Vastila and H. Adolfsson,
Chem.–Eur. J., 2003, 9, 4031; (c) A. Bøgevig, I. M. Pastor and
H. Adolfsson, Chem.–Eur. J., 2004, 10, 294; (d) P. Vastila,
J. Wettergren and H. Adolfsson, Chem. Commun., 2005, 4039;
(e) P. Vastila, A. B. Zaitsev, J. Wettergren, T. Privalov and
H. Adolfsson, Chem.–Eur. J., 2006, 12, 3218; (f) J. Wettergren,
E. Buitrago, P. Ryberg and H. Adolfsson, Chem.–Eur. J., 2009,
15, 5709.
10 For recent reviews, see: (a) M. Dieguez, O. Pamies and C. Claver,
Chem. Rev., 2004, 104, 3189; (b) M. M. K. Boysen, Chem.–Eur. J.,
2007, 13, 8648; (c) V. Benessere, R. Del Litto, A. De Roma and
F. Ruffo, Coord. Chem. Rev., 2010, 254, 390; (d) S. Woodward,
M. Dieguez and O. Pamies, Coord. Chem. Rev., 2010, 254, 2007.
11 One of the limitations of using sugars as precursors for ligands
is that often only one of the enantiomers is readily available.
However, this limitation can be overcome by the rational design
of pseudo-enantiomeric ligands. See ref. 10d.
12 (a) S. Guillarme, T. X. Mai Nguyen and C. Saluzzo, Tetrahedron:
Asymmetry, 2008, 19, 1450; (b) K.-D. Huynh, H. Ibrahim,
M. Toffano and G. Vo-Thanh, Tetrahedron: Asymmetry, 2010,
21, 1542.
13 See for example: B. Martin-Matute and J.-E. Backvall, Curr. Opin.
Chem. Biol., 2007, 11, 226.
We thank the Swedish Research Council and The Carl
Trygger Foundation, the Spanish (CTQ2010-15835) and Catalan
c
12190 Chem. Commun., 2011, 47, 12188–12190
This journal is The Royal Society of Chemistry 2011