ORGANIC
LETTERS
2012
Vol. 14, No. 1
158–161
Bissilyl Enal: A Useful Linchpin for
Synthesis of Functionalized Vinylsilane
Species by Anion Relay Chemistry
Lu Gao,† Xinglong Lin,† Jian Lei,† Zhenlei Song,*,†,‡,§ and Zhi Lin†
Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal
Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy,
West China Hospital, Sichuan University, Chengdu 610041, P. R. China, and State Key
Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
Received November 1, 2011
ABSTRACT
Bissilyl enal, prepared by a Mannich reaction of 3,3-bissilyl aldehyde with formaldehyde, has proven to be a useful linchpin in an efficient three-
component coupling process. The reaction features a [1,4]-Brook rearrangement to generate the silylallyl anion, which adopts a predominant
endo-orientation and can undergo addition to electrophiles in a regio- and stereoselective manner, giving various E-vinylsilane species in good
yields.
The multicomponent reaction1 is a powerful synthetic
strategy for the rapid and efficient construction of complex
molecules in a single operation. In the past decade, Smith
III et al. have developed a series of fascinating multi-
component coupling protocols by anion relay chemistry
(ARC) involving negative charge migration in a “through-
space” fashion.2 In these reactions, the key step is a Brook
rearrangement3 of organosilane species as a bifunctional
linchpin to generate a new carbanion, which allows subse-
quent addition to a wide range of electrophiles. Generally,
the newly formed carbanions either involve aryl,4,2d,2g,2h
† Key Laboratory of Drug-Targeting of Education Ministry and Depart-
ment of Medicinal Chemistry, West China School of Pharmacy, Sichuan
University.
(3) For reviews, see: (a) Brook, A. G. Acc. Chem. Res. 1974, 7, 77. (b)
Moser, W. H. Tetrahedron 2001, 57, 2065. For the latest advances, see:
(c) Schmitt, D. C.; Johnson, J. S. Org. Lett. 2010, 12, 944. (d) Sasaki, M.;
Oyamada, K.; Takeda, K. J. Org. Chem. 2010, 75, 3941. (e) Boyce, G. R.;
Johnson, J. S. Angew. Chem., Int. Ed. 2010, 49, 8930. (f) Song, Z. L; Kui,
L. Z; Sun, X. W.; Li, L. J. Org. Lett. 2011, 13, 1440. (g) Hayashi, M.;
Nakamura, S. Angew. Chem., Int. Ed. 2011, 50, 2249. (h) Li, H.; Liu,
L. T.; Wang, Z. T; Zhao, F.; Zhang, S. G; Zhang, W. X; Xi, Z. F.
Chem.;Eur. J. 2011, 17, 7399. (i) Sasaki, M.; Kondo, Y.; Kawahata,
M.; Yamaguchi, K.; Takeda, K. Angew. Chem., Int. Ed. 2011, 50, 6375.
(j) Martin, D. B. C.; Vanderwal, C. D. Chem. Sci. 2011, 2, 649.
(4) (a) Moser, W. H.; Endsley, K. E.; Colyer, J. T. Org. Lett. 2000, 2,
718. (b) Moser, W. H.; Zhang, J.; Lecher, C. S.; Frazier, T. L.; Pink, M.
Org. Lett. 2002, 4, 1981. (c) Devarie-Baez, N. O.; Shuhler, B. J.; Wang,
H.; Xian, M. Org. Lett. 2007, 9, 4655. (d) Smith, A. B., III; Kim, W. S.;
Wuest, W. M. Angew. Chem., Int. Ed. 2008, 47, 7082. (e) Akai, S.; Ikawa,
T.; Takayanagi, S. I.; Morikawa, Y.; Mohri, S.; Tsubakiyama, M.; Egi,
M.; Wada, Y.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 7673.
(5) (a) Taguchi, H.; Ghoroku, K.; Tadaki, M.; Tsubouchi, A.;
Takeda, T. Org. Lett. 2001, 3, 3811. (b) Taguchi, H.; Takami, K.;
Tsubouchi, A.; Takeda, T. Tetrahedron Lett. 2004, 45, 429. (c) Tsubouchi,
A.; Enatsu, S.; Kanno, R.; Takeda, T. Angew. Chem., Int. Ed. 2010, 49,
7089.
‡ State Key Laboratory of Biotherapy, West China Hospital, Sichuan
University.
§ Lanzhou University.
(1) For reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115. (b)
€
Ugi, I. I. Angew. Chem., Int. Ed. 2000, 39, 3168. (c) Domling, A. In
Multicomponent Reactions; Zhu, J., Eds.; Wiley-VCH: Weinheim, Ger-
many, 2005; pp 76ꢀ94. (d) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed.
2005, 44, 1602. (e) Tejedor, D.; Garcıa-Tellado, F. Chem. Soc. Rev. 2007,
´
36, 484. (f) Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439. (g)
Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010, 39,
4402. (h) Uijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int.
Ed. 2011, 50, 6234.
(2) For reviews, see: (a) Smith, A. B., III; Adams, C. M. Acc. Chem.
Res. 2004, 37, 365. (b) Smith, A. B., III; Wuest, W. M. Chem. Commun.
2008, 5883. For the latest advances in this group, see:(c) Smith, A. B.,
III; Foley, M. A; Dong, S. Z.; Orbin, A. J. Org. Chem. 2009, 74, 5987. (d)
Devarie-Baez, N. O.; Kim, W. S.; Smith, A. B., III; Xian, M. Org. Lett.
2009, 11, 1861. (e) Smith, A. B., III; Kim, W. S.; Tong, R. B. Org. Lett.
2010, 12, 588. (f) Smith, A. B., III; Tong, R. B. Org. Lett. 2010, 12, 1260.
(g) Smith, A. B., III; Kim, W. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
6787. (h) Smith, A. B., III; Tong, R. B.; Kim, W. S.; Maio, W. A. Angew.
Chem., Int. Ed. 2011, 50, 8904. (i) Smith, A. B., III; Han, H.; Kim, W. S.
Org. Lett. 2011, 13, 3328.
r
10.1021/ol202942a
Published on Web 11/30/2011
2011 American Chemical Society