superiority of the system consisting of chloro(triphenyl-
phosphine) gold(I)3 and silverhexafluoroantimonate(V) in
dichloromethane: toour delight, the product yield could be
increased to 92% yield.4
Table 1. Substrate Screening for AuI-Mediated Indene Synthe-
sis
With these results in hand, we considered the possibility
of indanone synthesis via Meinwald rearrangement of
epoxides5 (Scheme 1). The use of m-CPBA with indene
2d allowed clean formation of the corresponding epox-
ide along with the product 3d; as low as 0.1 mol % of tri-
flimide appeared to be sufficient for the clean and regiose-
lective conversion to 3d with 94% overall yield.
We then tested the Ph3PAuCl/AgSbF6 catalytic sys-
tem (10 mol %) on a range of TIPS-substituted allylic
alcohols 1dÀq (Table 1), which can easily be synthesized
via organolithium species formed from (1-bromovinyl)
triisopropylsilane, which in turn can be conveniently
prepared on a large scale in 3 steps from inexpensive
(3) For selected reviews on gold-catalyzed reactions, see: (a) Arcadi,
A.; Giuseppe, S. D. Curr. Org. Chem. 2004, 8, 795. (b) Zhang, L.; Sun, J.;
ꢀ
ꢀ~
Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (c) Jimenez-Nunez, E.;
Echavarren, A. M. Chem. Commun. 2007, 333. (d) Hashmi, A. S. K.
Chem. Rev. 2007, 107, 3180. (e) Shen, H. C. Tetrahedron 2008, 64, 3885.
(f) Shen, H. C. Tetrahedron 2008, 64, 7847. (g) Marion, N.; Nolan, S. P.
Chem. Soc. Rev. 2008, 37, 1776. (h) Gorin, D. J.; Sherry, B. D.; Toste,
F. D. Chem. Rev. 2008, 108, 3351. (i) Arcadi, A. Chem. Rev. 2008, 108,
3266. (j) Muzart, J. Tetrahedron 2008, 64, 5815. (k) Skouta, R.; Li, C.-J.
Tetrahedron 2008, 64, 4917. (l) Li, Z.; Brouwer, C.; He, C. Chem. Rev.
2008, 108, 3239. (m) Widenhoefer, R. A. Chem.;Eur. J. 2008, 14, 5382.
(n) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (o)
Hashmi, A. S. K. Pure Appl. Chem. 2010, 82, 657. (p) Shapiro, N. D.;
Toste, F. D. Synlett 2010, 675. (q) Nolan, S. P. Acc. Chem. Res. 2011, 44,
91. For discussions on the nature of the intermediates in Au-catalyzed
reactions, see the following publications and references therein:
€
(r) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (s) Furstner, A.;
Morency, L. Angew. Chem., Int. Ed. 2008, 47, 5030. (t) Hashmi, A. S. K.
Angew. Chem., Int. Ed. 2008, 47, 6754. (u) Seidel, G.; Mynott, R.;
€
Furstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510. (v) Benitez, D.;
Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard, W. A., III; Toste,
F. D. Nat. Chem 2009, 1, 482. (w) Hashmi, A. S. K. Angew. Chem., Int.
Ed. 2010, 49, 5232.
(4) The use of Ph3PAuCl/AgSbF6 demonstrated the same trend as
BF3: increasing the size of the silyl group led to improved yields. For
substrates 1aÀd the corresponding indenes were obtained in <1%, 5%,
56%, and 92% yields respectively.
(5) Contrary to our approach, the overwhelming majority of meth-
ods on Meinwald rearrangement are based on the use of Lewis acids:
Rickborn, B. In Comprehensive Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 3; Chapter 3.3, p 733 and references
therein. For more recent studies, see: (a) Maruoka, K.; Ooi, T.;
Yamamoto, H. Tetrahedron 1992, 48, 3303. (b) Maruoka, K.; Murase,
N.; Bureau, R.; Ooi, T.; Yamamoto, H. Tetrahedron 1994, 50, 3663.
(c) Ishihara, K.; Hanaki, N.; Yamamoto, H. Synlett 1995, 721.
(d) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1997, 62, 6547. (e)
Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212. (f) Suda, K.; Baba,
K.; Nakajima, S.; Takanami, T. Tetrahedron Lett. 1999, 40, 7243. (g)
Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B. J.; Mohan, R. S.
Tetrahedron Lett. 2000, 41, 1527. (h) Martınez, F.; del Campo, C.;
Llama, E. F. J. Chem. Soc., Perkin Trans. 1 2000, 1749. (i) Bhatia, K. A.;
Eash, K. J.; Leonard, N. M.; Oswald, M. C.; Mohan, R. S. Tetrahedron
Lett. 2001, 42, 8129. (j) Kita, Y.; Futamura, J.; Ohba, Y.; Sawama, Y.;
a Isolated yields after column chromatography. b Prepared via trans-
metalation with 2LiCl•CeCl3. c Carried out at 0 °C.
ꢀ
Ganesh, J. K.; Fujioka, H. J. Org. Chem. 2003, 68, 5917. (k) Karame, I.;
Tommasino, M. L.; Lemaire, M. Tetrahedron Lett. 2003, 44, 7687. (l)
Suda, K.; Kikkawa, T.; Nakajima, S.; Takanami, T. J. Am. Chem. Soc.
2004, 126, 9554. (m) Procopio, A.; Dalpozzo, R.; De Nino, A.; Nardi,
M.; Sindona, G.; Tagarelli, A. Synlett 2004, 2633. (n) Lee, S.-H.; Lee,
J.-C.; Li, M.-X.; Kim, N.-S. Bull. Korean Chem. Soc. 2005, 26, 221. (o)
Deng, X.-M.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2005, 70, 6537. (p)
Robinson, M. W. C.; Pillinger, K. S.; Graham, A. E. Tetrahedron Lett.
2006, 47, 5919. (q) Ko, N. H.; Kim, H. S.; Kang, S. O.; Cheong, M. Bull.
Korean Chem. Soc. 2008, 29, 682. (r) Donald, J. R.; Taylor, R. J. K.
Synlett 2009, 59. (s) Suda, K.; Nakajima, S.; Satoh, Y.; Takanami, T.
Introduction of a TMS-substituent did render the reac-
tion cleaner; however, the isolated yield of indene 2b
appeared to be unacceptably low (Scheme 1). The Triethyl-
silyl group provided a considerable increase in yield of
the product 2c. A triisopropyl-substituted alcohol 1d fur-
nished the desired indene 2d with the highest yield in the
series (67%). Screening of other Brønsted and Lewis acids
as a catalyst for the synthesis of 2d demonstrated the
€
€ €
Chem. Commun. 2009, 1255. (t) Ertur, E.; Gollu, M.; Demir, A. S.
Tetrahedron 2010, 66, 2373. (u) Robinson, M. W. C.; Pillinger, K. S.;
Mabbett, I.; Timms, D. A.; Graham, A. E. Tetrahedron 2010, 66, 8377.
Org. Lett., Vol. 14, No. 1, 2012
415