Organometallics
Note
134.9 (d, JC−P = 101.4 Hz), 137.2, 166.8; 31P NMR (CDCl3) δ 19.2
ppm; HRMS (EI) calcd for C26H21OPSe 460.0496, found 460.0488.
Reaction of Benzeneselenol with Diphenylphosphine Oxide
in the Presence of RhCl(PPh3)3 Catalyst. In an NMR tube,
Ph2P(O)H (60.7 mg, 0.30 mmol), PhSeH (47.1 mg, 0.30 mmol), and
RhCl(PPh3)3 (13.9 mg, 0.015 mmol) were placed with C6D6 (0.6 mL)
under a nitrogen atmosphere. The mixture was heated at 80 °C for 2 h.
During heating, evolution of gas was observed. After the reaction, the
formation of Ph2P(O)SePh was determined by 1H, 31P, and 77Se NMR
spectroscopies. The yield of Ph2P(O)SePh (97%) was determined by
1H NMR spectroscopy in C6D6 with 1,3,5-trioxane as internal
Chem. USSR (Engl. Transl.) 1984, 1897. (f) Renard, M.; Hevesi, L.
Tetrahedron 1985, 41, 5939. (g) Comasseto, J. V.; Brandt, C. A.
Synthesis 1987, 146. (h) Barros, O. S. D.; Lang, E. S.; de Oliveira,
C. A. F.; Peppe, C.; Zeni, G. Tetrahedron Lett. 2002, 43, 7921.
(i) Perin, G.; Jacob, R. G.; de Azambuja, F.; Botteselle, G. V.; Siqueira,
G. M.; Freitag, R. A.; Lenardao, E. J. Tetrahedron Lett. 2005, 46, 1679.
(j) Lenardao, E. J.; Silva, M. S.; Mendes, S. R; de Azambuja, F.; Jacob,
R. G.; dos Santos, P. C. S.; Perin, G. J. Braz. Chem. Soc. 2007, 18, 943.
(5) (a) Ogawa, A.; Obayashi, R.; Sekiguchi, M.; Masawaki, T.;
Kambe, N.; Sonoda, N. Tetrahedron Lett. 1992, 33, 1329.
(6) (a) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Sonoda, N.
Tetrahedron Lett. 1992, 33, 5525. (b) Ananikov, V. P.; Malyshev, D. A.;
Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko, I. L. J. Organomet.
Chem. 2003, 679, 162. (c) Kamiya, I.; Nishinaka, E.; Ogawa, A. J. Org.
Chem. 2005, 70, 696. (d) Ananikov, V. P.; Orlov, N. V.; Beletskaya,
I. P. Organometallics 2007, 26, 740. (e) Ozaki, T.; Kotani, M.; Kusano,
H.; Nomoto, A.; Ogawa, A. J. Organomet. Chem. 2011, 696, 450.
(7) Only one example of transition-metal-catalyzed hydroselenation
of internal alkynes with excellent stereoselectivity, to the best of our
knowledge, has been reported. See ref 6d.
(8) As to hydrothiolation of alkynylphosphines, Pd(OAc)2-catalyzed
anti-addition of thiol to alkynylphosphines has been reported, see:
Kondoh, A.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 1383.
(9) Regioisomers of 1-diphenylphosphinyl-2-phenylseleno-1-alkene
were described in the following literature: Kawaguchi, S-i.; Shirai, T.;
Ohe, T.; Nomoto, A.; Sonoda, M.; Ogawa, A. J. Org. Chem. 2009, 74,
1751.
(10) There are some reports of transition-metal-catalyzed dehydro-
genative coupling reactions of E−H compounds. For example, see:
(a) Ishiyama, T.; Nishijima, K-i.; Miyaura, N.; Suzuki, A. J. Am. Chem.
Soc. 1993, 115, 7225. (b) Clark, T. J.; Lee, K.; Manners, I. Chem.Eur.
J. 2006, 12, 8634. (c) Itazaki, M.; Ueda, K.; Nakazawa, H. Angew.
Chem., Int. Ed. 2009, 48, 3313. (d) Less, R. J.; Melen, R. L.; Naseri, V.;
Wright, D. S. Chem. Commun. 2009, 4929.
1
standard. Spectral data of Ph2P(O)SePh: H NMR (C6D6) δ 6.75−
6.79 (m, 3H), 6.87−6.93 (m, 6H), 7.58−7.65 (m, 2H), 7.82−7.89 (m,
4H); 31P NMR (C6D6) δ 37.3 ppm (with 2 satellites JP−Se = 372 Hz);
77Se NMR δ 377 ppm (d, JSe−P = 372 Hz).
Reaction of Diphenyl Diselenide with Diphenylphosphine
Oxide. In an NMR tube, Ph2P(O)H (101.1 mg, 0.50 mmol), (PhSe)2
(156.1 mg, 0.50 mmol), and C6D6 (1 mL) were placed under a
nitrogen atmosphere. The mixture was stirred for 5 min at room
temperature, and then NMR spectra of the crude mixture were
measured. The charts of 31P and 77Se NMR spectroscopies indicated
that Ph2P(O)H (δ 18.0 ppm in C6D6)18 and (PhSe)2 (δ 461 ppm in
C6D6)19 were consumed completely. In the crude mixture, 90% yield
of PhSeH (δ 143 ppm in C6D6)19 and 92% yield of Ph2P(O)SePh
1
were formed, respectively. These yields were determined by H NMR
spectroscopy.
ASSOCIATED CONTENT
* Supporting Information
■
S
Information about a determination of stereoselectivity for 3.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
(11) Ackermann, L. Synthesis 2006, 10, 1557.
■
(12) Addition of Et3N promoted Rh-catalyzed dehydrogenative
coupling of PhSeH. Therefore, the yield of 3a in the case of entry 9 in
Table 1 was low.
(13) In this system, both phosphinyl- and seleno-substituted alkene was
not obtained. For Pd-catalyzed selenophosphorylation of alkynes, see:
Han, L.-B.; Choi, N.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 7000.
(14) We have found a similar type of ligand exchange reaction of
(RR′CCH)Rh-P(O)Ph2 or (RR′CCH)Pd-P(O)Ph2 species, see:
(a) Kawaguchi, S-i.; Kotani, M.; Ohe, T.; Nagata, S.; Nomoto, A.;
Sonoda, M.; Ogawa, A. Phosphorous Sulfur, Silicon, Relat. Elem. 2010,
185, 1090. (b) Kawaguchi, S-i.; Nagata, S.; Nomoto, A.; Sonoda, M.;
Ogawa, A. J. Org. Chem. 2008, 73, 7928.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for JSPS Fellows
(No. 21-10516) from the Japan Society for the Promotion of
Science and by Industry-University Cooperation Program of
Sakai City.
REFERENCES
■
(15) Beletskaya, I. P.; Afanasiev, V. V.; Kazankova, M. A.; Efimova,
I. V. Org. Lett. 2003, 5, 4309.
(1) Selected representative reviews: (a) Klayman, D. L.; Gunther,
̈
W. H. H. Organic Selenium Compounds: Their Chemistry and Biology;
John Wiley & Sons: New York, 1973. (b) Wirth, T. Organoselenium
Chemistry; Springer: Berlin, 2000; Vol. 208. (c) Ogawa, A. In Main
Group Metals in Organic Synthesis; Yamamoto, H., Oshima, K., Eds.;
Wiley-VCH: Weinheim, 2004; Vol. 2, p 813. (d) Nogueira, C. W.;
Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255.
(2) (a) Rappoport, Z. The Chemistry of Organic Selenium and
Tellurium Compounds, Vol. 3; John Wiley & Sons: New York, in press.
(b) Tingoli, M.; Tiecco, M.; Testaferri, L.; Temperini, A.; Pelizzi, G.;
Bacchi, A. Tetrahedron 1995, 51, 4691. (c) Zhu, L.-S.; Huang, X. Synth.
Commun. 1997, 27, 39. (d) Fang, X.; Jiang, M.; Hu, R.; Cai, M. Synth.
Commun. 2008, 38, 4170.
(16) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 777.
(17) Dos Santos, A. A.; Castelani, P.; Bassora, B. K.; Fogo, J. C.;
Costa, C. E.; Comasseto, J. V. Tetrahedron 2005, 61, 9173.
(18) Kawaguchi, S-i.; Nagata, S.; Shirai, T.; Tsuchii, K.; Nomoto, A.;
Ogawa, A. Tetrahedron Lett. 2006, 47, 3919.
(19) Crich, D.; Jiao, X.-Y.; Yao, Q.; Harwood, J. S. J. Org. Chem.
1996, 61, 2368.
(3) (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104,
3079. (b) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111,
1596.
(4) (a) Kataev, E. G.; Petrov, V. N. J. Gen. Chem. USSR (Engl.
Transl.) 1962, 32, 3626. (b) Petragnani, N.; Rodrigues, R.; Comasseto,
J. V. J. Organomet. Chem. 1976, 114, 281. (c) Wadsworth, D. H.; Detty,
M. R. J. Org. Chem. 1980, 45, 4611. (d) Comasseto, J. V.; Ferreira,
J. T. B.; Petragnani, N. J. Organomet. Chem. 1981, 216, 287. (e) Tsoi,
L. A.; Patsaev, A. K.; Ushanov, V. Zh.; Vyaznikovtsev, L. V. J. Org.
6769
dx.doi.org/10.1021/om200663k | Organometallics 2011, 30, 6766−6769