2382
S. S. Patil et al.
LETTER
tion of an aromatic aldehyde bearing electron-donating
groups provided a higher yield (Table 2 entry 7), while an
aldehyde with an electron-withdrawing substituent result-
ed in lower yield (Table 2 entry 2). The sterically hindered
1-naphthaldehyde also reacted under optimized condi-
tions (Table 2, entries 4 and 5), and thiophene-2-carbox-
aldehyde aldehyde afforded a good yield of product 8h
(Table 2 entry 8), while aliphatic aldehydes gave lower
yields (Table 2, entries 9 and 10).
References and Notes
(1) (a) Zhu, J.; Bienayme, H. Multicomponent Reactions;
Wiley-VCH: Weinheim, 2005. (b) Dömling, A. Chem. Rev.
2006, 106, 17. (c) Dömling, A.; Ugi, I. Angew. Chem. Int.
Ed. 2000, 39, 3168.
(2) (a) Tietze, L. F.; Brasche, G.; Gericke, G. M. Domino
Reactions in Organic Synthesis; Wiley-VCH: Weinheim,
2006. (b) Tietze, L. F.; Beifuss, U. Angew. Chem. Int. Ed.
1993, 32, 131. (c) Tietze, L. F. Chem. Rev. 1996, 96, 115.
(3) (a) Arya, A.; Chou, D. T. H.; Baek, M. G. Angew. Chem. Int.
Ed. 2001, 40, 339. (b) Burke, M. D.; Berger, E. M.;
Schreiber, S. L. Science 2003, 302, 613. (c) Cox, B.;
Denyer, J. C.; Binnie, A.; Donnelly, M. C.; Evans, B.; Green,
D. V. S.; Lewis, J. A.; Mander, T. H.; Merritt, A. T.; Valler,
M. J.; Watson, S. P. Prog. Med. Chem. 2000, 37, 83.
(d) Schreiber, S. L. Science 2000, 287, 1964. (e) Schreiber,
S. L.; Burke, M. D. Angew. Chem. Int. Ed. 2004, 43, 46.
(4) (a) Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323. (b) Kel’in, A.
V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001,
123, 2074. (c) Kim, J. T.; Gevorgyan, V. Org. Lett. 2002, 4,
4697. (d) Kim, J. T.; Butt, J.; Gevorgyan, V. J. Org. Chem.
2004, 69, 5638. (e) Kim, J. T.; Gevorgyan, V. J. Org. Chem.
2005, 70, 2054. (f) Seregin, I. V.; Gevorgyan, V. J. Am.
Chem. Soc. 2006, 128, 12050. (g) Smith, C. R.; Bunnelle, E.
M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169.
(h) Liu, Y. H.; Song, Z. Q.; Yan, B. Org. Lett. 2007, 9, 409.
(i) Bai, Y.; Zeng, J.; Ma, J.; Gorityala, B. K.; Liu, X. W.
J. Comb. Chem. 2010, 12, 696.
Ph
Ph
(O)
N
Ph
N
viii
Ph
8
Ph
Ph
H
B–
FeII
Ph
BH
N
N
H
vii
Ph
Ph
FeIII
Ph
Ph
NH
HN
PhCHO
+ PhNH2
Ph
(5) Chernyak, N.; Gevorgyan, V. Angew. Chem. Int. Ed. 2010,
Ph
FeIII
v
49, 2743.
(6) (a) Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Tetrahedron 2008,
64, 2755. (b) Zhang, Y.; Li, P.; Wang, L. J. Heterocycl.
Chem. 2011, 48, 153. (c) Sakai, N.; Uchida, N.; Konakahar,
T. Synlett 2008, 1515.
vi
Scheme 4 Postulated reaction mechanism
(7) Li, H.; Liu, J.; Yan, B.; Li, Y. Tetrahedron Lett. 2009, 50,
2353.
A plausible pathway involves Fe(acac)3/TBAOH-cata-
lyzed three-component reaction of aldehyde, amine, and
alkyne to lead to formation of propargylamine vi.10 The
triple bond of propargylamine vi is activated by Lewis
acidic Fe(III) to promote an intramolecular nucleophilic
attack through the aniline aromatic-ring nitrogen. The re-
sulting Fe(III) vinyl ate complex vii subsequently under-
goes decomposition to give the dihydroquinoline
intermediate viii and regenerates Fe(III) catalyst for fur-
ther reactions (Scheme 4). In the presence of air, the gen-
erated dihydroquinoline could be further oxidized to
afford quinoline 8.
(8) (a) Martin, R.; Fürstner, A. Angew. Chem. Int. Ed. 2004, 43,
3955. (b) Sapountzis, I.; Lin, W.; Kofink, C. C.;
Despotopoulou, C.; Knochel, P. Angew. Chem. Int. Ed.
2005, 44, 1654. (c) Komeyama, K.; Morimoto, T.; Takaki,
K. Angew. Chem. Int. Ed. 2006, 45, 2938. (d) Plierker, B.
Angew. Chem. Int. Ed. 2006, 45, 6053. (e) Egami, H.;
Katsuki, T. J. Am. Chem. Soc. 2007, 129, 8940. (f) Cahiez,
G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc.
2007, 129, 13788. (g) Hatakeyama, T.; Nakamura, M.
J. Am. Chem. Soc. 2007, 129, 9844. (h) Gurinot, A.;
Reymond, S.; Cossy, J. Angew. Chem. Int. Ed. 2007, 46,
6521. (i) Li, Z.; Cao, L.; Li, C. J. Angew. Chem. Int. Ed.
2007, 46, 6505. (j) Li, Z.; Yu, R.; Li, H. Angew. Chem. Int.
Ed. 2008, 47, 7497. (k) Volla, C. M. R.; Vogel, P. Angew.
Chem. Int. Ed. 2008, 47, 1305. (l) Carril, M.; Correa, A.;
Bolm, C. Angew. Chem. Int. Ed. 2008, 47, 4862.
(m) Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.;
Katsuki, T. J. Am. Chem. Soc. 2010, 132, 13633.
(9) Chernyak, D.; Chernyak, N.; Gevorgyan, V. Adv. Synth.
Catal. 2010, 352, 961.
In summary, we have described effective Fe(acac)3/
TBAOH system for the three-component coupling–cy-
cloisomerization reactions of aldehydes, terminal alkynes,
and amines for synthesis of aminoindolizines and quino-
lines.
(10) Patil, S. S.; Patil, S. V.; Bobade, V. D. Synlett 2011, 1157.
(11) Kulkarni, A.; Török, B. Green Chem. 2010, 12, 875.
(12) Martínez, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2008, 73,
9778.
Acknowledgment
The authors wish to thank UGC, New Delhi, India, for financial
support.
(13) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E.; Verdecchia,
M. Synlett 2006, 3218.
(14) Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G.; Ruggieri, F.
J. Org. Chem. 1992, 57, 1842.
Synlett 2011, No. 16, 2379–2383 © Thieme Stuttgart · New York