Journal of Medicinal Chemistry
Article
(21) McCord, J. M.; Fridovich, I. Superoxide dismutase. An enzymic
function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244,
6049−6055.
(22) McCord, J. M.; Fridovich, I. The utility of superoxide dismutase
in studying free radical reactions. I. Radicals generated by the
interaction of sulfite, dimethyl sulfoxide, and oxygen. J. Biol. Chem.
1969, 244, 6056−6063.
(23) Faulkner, K. M.; Liochev, S. I.; Fridovich, I. Stable Mn(III)
porphyrins mimic superoxide dismutase in vitro and substitute for it in
vivo. J. Biol. Chem. 1994, 269, 23471−23476.
(24) Batinic-Haberle, I.; Rajic, Z.; Tovmasyan, A.; Reboucas, J. S.; Ye,
X.; Leong, K. W.; Dewhirst, M. W.; Vujaskovic, Z.; Benov, L.;
Spasojevic, I. Diverse functions of cationic Mn(III) N-substituted
pyridylporphyrins, recognized as SOD mimics. Free Radical Biol. Med.
2011, 51, 1035−1053.
(25) Reboucas, J. S.; DeFreitas-Silva, G.; Spasojevic, I.; Idemori,
Y. M.; Benov, L.; Batinic-Haberle, I. Impact of electrostatics in redox
modulation of oxidative stress by Mn porphyrins: protection of SOD-
deficient Escherichia coli via alternative mechanism where Mn
porphyrin acts as a Mn carrier. Free Radical Biol. Med. 2008, 45,
201−210.
(26) Batinic-Haberle, I.; Spasojevic, I.; Fridovich, I.
Tetrahydrobiopterin rapidly reduces the SOD mimic Mn(III) ortho-
tetrakis(N-ethylpyridinium-2-yl)porphyrin. Free Radical Biol. Med.
2004, 37, 367−374.
(27) Ferrer-Sueta, G.; Hannibal, L.; Batinic-Haberle, I.; Radi, R.
Reduction of manganese porphyrins by flavoenzymes and
submitochondrial particles: A catalytic cycle for the reduction of
peroxynitrite. Free Radical Biol. Med. 2006, 41, 503−512.
(28) Stern, M.; Jensen, M.; Kramer, K. Peroxynitrite decomposition
catalysts. J. Am. Chem. Soc. 1996, 118, 8735−8736.
(29) Batinic-Haberle, I.; Spasojevic, I.; Hambright, P.; Benov, L.;
Crumbliss, A.; Fridovich, I. Relationship among redox potentials,
proton dissociation constants of pyrrolic nitrogens and in vivo and in
vitro superoxide dismutating activities of manganese(III) and Iron(III)
water-soluble porphyrins. Inorg. Chem. 1999, 38, 4011−4022.
(30) Ferrer-Sueta, G.; Batinic-Haberle, I.; Spasojevic, I.; Fridovich, I.;
Radi, R. Catalytic scavenging of peroxynitrite by isomeric Mn(III)
N-methylpyridylporphyrins in the presence of reductants. Chem. Res.
Toxicol. 1999, 12, 442−449.
(31) Batinic-Haberle, I.; Benov, L.; Spasojevic, I.; Fridovich, I. The
ortho effect makes manganese(III) meso-tetrakis(N-methyl-
pyridinium-2-yl)porphyrin a powerful and potentially useful
superoxide dismutase mimic. J. Biol. Chem. 1998, 273, 24521−24528.
(32) Spasojevic, I.; Chen, Y.; Noel, T. J.; Yu, Y.; Cole, M. P.; Zhang,
L.; Zhao, Y.; Clair, D. K. St; Batinic-Haberle, I. Mn porphyrin-based
superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets
mouse heart mitochondria. Free Radical Biol. Med. 2007, 42, 1193−
1200.
(33) Batinic-Haberle, I.; Ndengele, M. M.; Cuzzocrea, S.; Reboucas,
J. S.; Spasojevic, I.; Salvemini, D. Lipophilicity is a critical parameter
that dominates the efficacy of metalloporphyrins in blocking the
development of morphine antinociceptive tolerance through
peroxynitrite-mediated pathways. Free Radical Biol. Med. 2009, 46,
212−219.
(34) Kos, I.; Reboucas, J. S.; DeFreitas-Silva, G.; Salvemini, D.;
Vujaskovic, Z.; Dewhirst, M. W.; Spasojevic, I.; Batinic-Haberle, I.
Lipophilicity of potent porphyrin-based antioxidants: Comparison of
ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free
Radical Biol. Med. 2009, 47, 72−78.
(37) Rosenthal, R. A.; Huffman, K. D.; Fisette, L. W.; Damphousse,
C. A.; Callaway, W. B.; Malfroy, B.; Doctrow, S. R. Orally available Mn
porphyrins with superoxide dismutase and catalase activities. J. Biol.
Inorg. Chem. 2009, 14, 979−991.
(38) Salvemini, D.; Little, J. W.; Doyle, T.; Neumann, W. L. Roles of
reactive oxygen and nitrogen species in pain. Free Radical Biol. Med.
2011, 51, 951−966.
(39) Salvemini, D.; Neumann, W. L. Peroxynitrite: A strategic
linchpin of opioid analgesic tolerance. Trends Pharmacol. Sci. 2009, 30,
194−202.
(40) Salvemini, D.; Neumann, B. Targeting peroxynitrite driven
nitroxidative stress with synzymes: A novel therapeutic approach in
chronic pain management. Life Sci. 2010, 86, 604−614.
(41) Kamat, N. P.; Liao, Z.; Moses, L. E.; Rawson, J.; Therien, M. J.;
Dmochowski, I. J.; Hammer, D. A. Sensing membrane stress with near
IR-emissive porphyrins. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 13984−
13989.
(42) Drain, C. M.; Varotto, A.; Radivojevic, I. Self-organized
porphyrinic materials. Chem. Rev. 2009, 109, 1630−1658.
(43) Gotz, D. C.; Bruhn, T.; Senge, M. O.; Bringmann, G. Synthesis
and stereochemistry of highly unsymmetric beta,meso-linked
porphyrin arrays. J. Org. Chem. 2009, 74, 8005−8020.
(44) Senge, M. O.; Fazekas, M.; Notaras, E.; Blau, W.; Zawadzka, M.;
Locos, O.; Mhuircheartaigh, E. Nonlinear Optical Properties of
Porphyrins. Adv. Mater. 2007, 19, 2737−2774.
(45) Filatov, M. A.; Lebedev, A. Y.; Vinogradov, S. A.; Cheprakov,
A. V. Synthesis of 5,15-diaryltetrabenzoporphyrins. J. Org. Chem. 2008,
73, 4175−4185.
(46) Kelkar, S. S.; Reineke, T. M. Theranostics: Combining Imaging
and Therapy. Bioconjugate Chem. 2011, 22, 1879−1903.
(47) Manivannan, E. C. Y.; Joshi, P.; Pandey, R. The role of
porphyrin chemistry in tumor imaging and photodynamic therapy.
Chem. Soc. Rev. 2011, 40, 340−362.
(48) Lebedev, A. Y.; Troxler, T.; Vinogradov, S. A. Design of
Metalloporphyrin-Based Dendritic Nanoprobes for Two-Photon
Microscopy of Oxygen. J. Porphyrins Phthalocyanines 2008, 12,
1261−1269.
(49) Menard, F.; Sol, V.; Ringot, C.; Granet, R.; Alves, S.; Morvan, C. L.;
Queneau, Y.; Ono, N.; Krausz, P. Synthesis of tetraglucosyl- and
tetrapolyamine-tetrabenzoporphyrin conjugates for an application in
PDT. Bioorg. Med. Chem. 2009, 17, 7647−7657.
(50) Oncel, N. B. S. Ni(II)- and Vanadyloctaethylporphyrin Self-
Assembled Layers Formed on Bare and 5-(Octadecyloxy)isophthalic
Acid Covered Graphite. Langmuir 2009, 25, 9290−9295.
(51) Fuhrhop, J.-H.; Hosseinpour, D. Hexahydro-29H,31H-
tetrabenzo[b,g,l,q]porphin and -octayl octaacetate. Liebigs Ann.
Chem. 1985, 689−695.
(52) May, D. Jr.; Lash, T. D. Porphyrins with exocyclic rings. 2.
Synthesis of Geochemically Significant Tetrahydrobenzoporphyrins
from 4,5,6,7-Tetrahydro-2H-Isoindoles. J. Org. Chem. 1992, 57, 4820−
4828.
(53) Riley, D. P.; Neumann, W. L.; Henke, S. L.; Lennon, P. J.;
Weiss, R. H. Synthesis, Characterization, and Stability of Manganese
(II) C-Substituted 1,4,7,10,13 Pentaazacyclopentadecane Complexes
Exhibiting Superoxide Dismutase Activity. Inorg. Chem. 1996, 35,
5213−5231.
(54) Riley, D. P.; Neumann, W. L.; Lennon, P. J.; Weiss, R. H.
Toward the Rational Design of Superoxide Dismutase Mimics:
Mechanistic Studies for the Elucidation of Substituent Effects on the
Catalytic Activity of Macrocyclic Manganse(II) Complexes. J. Am.
Chem. Soc. 1997, 119, 6522−6528.
(35) Spasojevic, I.; Chen, Y.; Noel, T. J.; Fan, P.; Zhang, L.;
Reboucas, J. S.; St. Clair, D. K.; Batinic-Haberle, I. Pharmacokinetics of
the potent redox-modulating manganese porphyrin, MnTE-2-
PyP(5+), in plasma and major organs of B6C3F1 mice. Free Radical
Biol. Med. 2008, 45, 943−949.
(36) Liang, L. P.; Huang, J.; Fulton, R.; Day, B. J.; Patel, M. An orally
active catalytic metalloporphyrin protects against 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine neurotoxicity in vivo. J. Neurosci. 2007, 27,
4326−4333.
(55) Ohnishi, M.; Urry, D. W. Solution conformation of valinomycin-
potassium ion complex. Science 1970, 168, 1091−1092.
(56) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward,
K. W.; Kopple, K. D. Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615−2623.
(57) Ono, N.; Hisayuki, K.; Bougauchi, M.; Maruyama, K. Porphyrin
synthesis from nitro compounds. Tetrahedron 1990, 46, 7483−7496.
8668
dx.doi.org/10.1021/jm201233r | J. Med. Chem. 2011, 54, 8658−8669