Phosphite-Mediated Synthesis of Benzimidazoles
chlorobenzaldehyde and a benzylic amine as starting part-
ners (Scheme 4). Product 3k probably results from an inter-
mediate cyclization followed by a final aromatization
through isocyanate release. When the amine component
cannot be involved in the cyclization process, this pathway
is the only one observed, as shown by the exclusive forma-
tion of 3l when starting with butylamine and p-chlorobenz-
aldehyde (Scheme 4).
Acknowledgments
We thank the Centre National de la Recherche Scientifique
(CNRS) and École Nationale Supérieure de Techniques Avancées
(ENSTA) for financial support; S. R. P. thanks the L’Agence Na-
tionale de la Recherche (ANR) (CP2D2008-Muse) for a fellowship.
[1] For some reviews see: a) J. Zhu, H. Bienaymé (Eds.), Multicom-
ponent Reactions, Wiley-VCH, Weinheim, 2005; b) A. Dömling,
I. Ugi, Angew. Chem. 2000, 112, 3300; Angew. Chem. Int. Ed.
2000, 39, 3168–3210; c) A. Dömling, Chem. Rev. 2006, 106, 17–
89; d) H. Bienaymé, C. Hulme, G. Oddon, P. Schmitt, Chem.
Eur. J. 2000, 6, 3321–3329; e) R. V. A. Orru, M. de Greef, Syn-
thesis 2003, 1471–1499; f) L. El Kaim, L. Grimaud, Tetrahe-
dron 2009, 65, 2153–2171.
[2] a) B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo,
R. M. Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber,
P. S. Anderson, R. S. L. Chang, V. J. Lotti, D. J. Cerino, T. B.
Chen, P. J. Kling, K. A. Kunkel, J. P. Springer, J. Hirshfield, J.
Med. Chem. 1988, 31, 2235–2246; b) D. A. Horton, G. T.
Bourne, M. L. Smythe, Chem. Rev. 2003, 103, 893–930; c) D. A.
Horton, G. T. Bourne, M. L. Smythe, J. Comp.-Aided. Mol.
Des. 2002, 16, 415–430.
Conclusions
As a conclusion, we have disclosed a new phosphite-me-
diated reductive cyclization of o-nitroaniline derivatives
through the activation of the C–H aminobenzylic position.
Combined with a first Ugi–Smiles step, these conditions al-
lowed us to achieve one of the shortest IMCR routes for
access to benzimidazole derivatives from simple commer-
cially available starting materials.[13] We are further studying
the interest of phosphite-triggered reactions in IMCRs.
[3] a) C. G. Blettner, W. A. König, G. Rühter, W. Stenzel, T.
Schotten, Synlett 1999, 307–310; b) Y. C. Chi, C.-M. Sun, Syn-
lett 2000, 591–594; c) C.-M. Yeh, C.-M. Sun, Synlett 1999,
810–812; d) C.-M. Yeh, C.-M. Sun, Tetrahedron Lett. 1999, 40,
7247–7250; e) D. Tumelty, M. K. Schwarz, M. C. Needels, Tet-
rahedron Lett. 1998, 39, 7467–7470; f) J. P. Mayer, G. S. Lewis,
C. McGee, D. Bankaitis Davis, Tetrahedron Lett. 1998, 39,
6655–6658.
[4] a) M. R. Grimmett, “Imidazoles and their Benzo Derivatives”
in Comprehensive Heterocyclic Chemistry (Eds.: A. R. Ka-
tritzky, C. W. Rees), Pergamon, Oxford, 1984, vol. 5, pp. 457–
487; b) F. Lieby-Muller, C. Simon, K. Imhof, T. Constantieux,
J. Rodriguez, Synlett 2006, 1671–1674; c) S. K. Guchhait, C.
Madaan, B. S. Thakkar, Synthesis 2009, 19, 3293–3300; d) A.
Alizadeh, Z. Noaparast, H. Hamideh Sabahnoo, N. Zohreh,
Synlett 2010, 1469–1472; e) P. Tempest, V. Ma, S. Thomas, Z.
Hua, M. G. Kelly, C. Hulme, Tetrahedron Lett. 2001, 42, 4959–
4962; f) C. Hulme, L. Ma, J. Romano, M. Morrissette, Tetrahe-
dron Lett. 1999, 40, 7925–7928; g) D. Coffinier, L. El Kaim,
L. Grimaud, Org. Lett. 2009, 11, 995–997; h) L. El Kaim, L.
Grimaud, S. R. Purumandla, J. Org. Chem. 2011, 76, 4728–
4733.
[5] a) O. Meth-Cohn, Adv. Heterocycl. Chem. 1996, 65, 1; b) M. J.
Donaghy, S. P. Stanforth, Tetrahedron 1999, 55, 1441–1448; c)
M. L. Richardson, K. A. Croughton, C. S. Matthews, M. F. G.
Stevens, J. Med. Chem. 2004, 47, 4105–4108.
[6] a) J. W. Hubbard, A. M. Piegols, B. C. G. Soederberg, Tetrahe-
dron 2007, 63, 7077–7085; b) A. Bassoli, S. Cenini, F. Farina,
M. Orlandi, B. Rindone, J. Mol. Catal. 1994, 89, 121–142.
[7] a) J. I. G. Cadogan, Acc. Chem. Res. 1972, 5, 303–310; b)
B. C. G. Söderberg, Curr. Org. Chem. 2000, 4, 727–764.
[8] E. Merisor, J. Conrad, I. Klaiber, S. Mika, U. Beifuss, Angew.
Chem. 2007, 119, 3417; Angew. Chem. Int. Ed. 2007, 46, 3353–
3355.
Experimental Section
General Procedure for the Synthesis of Benzimidazoles: To a 3 m
solution of carbonyl derivative (1 mmol) in methanol was added
successively benzylamine (1 mmol), isocyanide (1 mmol, 1.0 equiv.),
and o-nitrophenol (1 mmol). The reaction mixture was stirred at
60 °C until completion of the Ugi–Smiles coupling and then cooled
to room temperature. After removing the excess amount of meth-
anol, the crude Ugi–Smiles adduct was used in the next step. To a
2 m solution of Ugi–Smiles adduct (1 mmol) in DMF was added
triethyl phosphite (8 mmol), and the tube was sealed. The mixture
was heated under microwave irradiation (165 °C, 200 W) for
25 min. After completion of the reaction, the excess amount of tri-
ethyl phosphite was removed in vacuo, and the residue was purified
by flash chromatography on silica gel.
2a: The typical procedure was followed employing the isovaleral-
dehyde (107 μL, 1.0 mmol), p-chlorobenzylamine (122 μL,
1.0 mmol), cyclohexylisocyanide (124 μL, 1.0 mmol), o-nitrophenol
(139 mg, 1.0 mmol), and triethyl phosphite (1.37 mL, 8.0 mmol) to
afford compound 2a (338 mg, 80%) as a white solid by flash
chromatography on silica gel. Rf = 0.8 (petroleum ether/diethyl
1
ether, 50:50). M.p. 177–178 °C. H NMR (400 MHz, CDCl3): δ =
7.85 (d, J = 7.8 Hz, 1 H), 7.58 (d, J = 8.3 Hz, 2 H), 7.51 (d, J =
8.3 Hz, 2 H), 7.40 (d, J = 7.8 Hz, 1 H), 7.37–7.28 (m, 2 H), 5.84
(br. d, J = 8.3 Hz, 1 H), 5.04 (dd, J = 4.0, 11.1 Hz, 1 H), 3.94–3.83
(m, 1 H), 2.25–2.16 (m, 1 H), 2.12–2.04 (m, 1 H), 1.92–1.82 (m, 2
H), 1.69–1.53 (m, 3 H), 1.40–1.26 (m, 2 H), 1.09–1.00 (m, 2 H),
0.75–0.65 (m, 1 H), 0.89–0.81 (m, 1 H), 0.59 (d, J = 6.3 Hz, 3 H),
0.43 (d, J = 6.3 Hz, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3): δ
= 168.1, 154.1, 143.6, 136.6, 133.3, 130.5, 129.4, 128.1, 123.6, 123.4,
120.7, 112.3, 59.2, 48.8, 37.9, 33.0, 32.8, 25.2, 24.8, 24.7, 24.4, 22.9,
[9] For a selection: N–N: a) J. I. G. Cadogan, M. Cameron-Wood,
R. K. Mackie, R. J. G. Searle, J. Chem. Soc. 1965, 4831–4837;
b) C. Nyffenegger, E. Pasquinet, F. Suzenet, D. Poullain, C.
Jarry, J.-M. Leger, G. Guillaumet, Tetrahedron 2008, 64, 9567–
9573; N–P: c) R. Haggam, J. Conrad, U. Beifuss, Tetrahedron
Lett. 2009, 50, 6627–6630; d) R. J. Sundberg, J. Am. Chem.
Soc. 1966, 88, 3781–3789.
20.5 ppm. IR (thin film): ν = 3310, 2933, 2857, 1644, 1522, 1477,
˜
1453, 1408, 1369, 1272, 1261, 1091, 1017 cm–1. HRMS: calcd. for
C25H30ClN3O 423.2077; found 423.2074.
[10]
The synthesis of benzimidazoles by heating phosphites with
imines formed between aromatic aldehydes and o-nitroaniline
has been reported: J. I. G. Cadogan, R. Marshall, M. D. M.
Smith, M. J. Todd, J. Chem. Soc. C 1970, 2441–2443.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and spectroscopic data for all new
compounds.
Eur. J. Org. Chem. 2011, 6177–6180
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6179