complementary strands. Higher structures can be formed with
doubly terminally labeled DNA. In principal, the short acetylene
linkers should provide strong electronic coupling between the
metal–ligand complex and the DNA. Hence it is expected that
these kind of DNA materials29 have a significant potential for
DNA-based nanoelectronics.
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft (Wa
1386/12-1), the Center for Functional Nanostructures (CFN) and
KIT is gratefully acknowledged.
Notes and references
1 P. W. K. Rothemund, Nature, 2006, 440, 297–302.
2 F. C. Simmel, Angew. Chem., Int. Ed., 2008, 47, 5884–5887.
3 K. V. Gothelf and T. H. LaBean, Org. Biomol. Chem., 2005, 3, 4023–
4037.
4 E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani,
W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J.
S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf and J. Kjems,
Nature, 2009, 459, 73–77.
5 C. Mao, W. Sun, Z. Shen and N. C. Seeman, Nature, 1999, 397, 144–146.
6 S. P. Liao and N. C. Seeman, Science, 2004, 306, 2072–2074.
7 P. P. Neelakandan, Z. Z. Pan, M. Hariharan, Y. Zheng, H. Weissman,
B. Rybtchinski and F. D. Lewis, J. Am. Chem. Soc., 2010, 132, 15808–
15813.
Fig. 3 Top: Fluorescence quenching (Fq) for DNA1-2 (left) and DNA5-6
(right) upon addition of metal ions; bottom: non-denaturing gel elec-
trophoresis (8% TBM-PAGE) of DNA1-2 and DNA5-6 in absence and in
presence of metal ions after silver staining.
8 F. Menacher, V. Stepanenko, F. Wu¨rthner and H.-A. Wagenknecht,
Chem.–Eur. J., 2011, 17, 6683–6688.
Table 2 Melting temperatures (Tm) of DNA1-2 in presence of metal ions
Metal ions
Tm [◦C]
DTm [◦C]a
9 H. Yang, C. K. McLaughlin, F. A. Aldaye, G. D. Hamblin, A. Z. Rys,
I. Rouiller and H. F. Sleiman, Nat. Chem., 2009, 1, 390–396.
10 K. M. Stewart, J. Rojo and L. W. McLaughlin, Angew. Chem., Int. Ed.,
2004, 43, 5808–5811.
(With EDTA)
NiCl2
CuCl2
FeCl2
ZnCl2
65.9
54.1/69.4
61.7
53.3/70.0
64.4
+2.4
-8.4/+6.9
11 K. M. Stewart and L. W. McLaughlin, J. Am. Chem. Soc., 2004, 126,
-0.8
2050–2057.
-9.2/+7.5
+1.9
12 D. Mitra, N. Di Cesare and H. F. Sleiman, Angew. Chem., Int. Ed.,
2004, 43, 5804–5808.
13 K. V. Gothelf, A. Thomsen, M. Nielsen, E. Clo and R. S. Brown, J.
Am. Chem. Soc., 2004, 126, 1044–1046.
a Compared to the unmodified references: Tm = 62.5 for DNA1-2 with an
A-T base pair instead of the terpy-dU modifications.
14 M. Go¨ritz and R. Kra¨mer, J. Am. Chem. Soc., 2005, 127, 18016–18017.
15 M. Kalek, A. S. Madsen and J. Wengel, J. Am. Chem. Soc., 2007, 129,
9392–9400.
assemblies. The second Tm value at lower temperatures (DTm
negative) corresponds to duplex assemblies that are conjugated
by the terpy-dU complexes, and therefore both hydrophobic and
metal-mediated stabilization inside the DNA duplex are lost.
The situation looks different and more straightforward in case
of the terminally labeled DNA5-6. The gels show clearly several
bands of slower mobility in the presence of Ni2+ and Fe2+ thereby
supporting the existence of DNA assemblies larger than dimers.
With these metal ions the band of isolated duplexes DNA5-6
has nearly completely vanished and Fq analysis shows complete
fluorescence quenching upon addition of slightly more than 1.0
equiv. metal ions, as expected.
16 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853–
907.
17 L. Zapata, K. Bathany, J. M. Schmitter and S. Moreau, Eur. J. Org.
Chem., 2003, 1022–1028.
18 R. B. Martin and J. A. Lissfelt, J. Am. Chem. Soc., 1956, 78, 938–940.
19 R. H. Holyer, C. D. Hubbard, S. F. A. Kettle and R. G. Wilkins, Inorg.
Chem., 1966, 5, 622–625.
20 R. Cali, E. Rizzarelli, S. Sammartano and G. Siracusa, Transition Met.
Chem., 1979, 4, 328–332.
21 G. U. Priimov, P. Moore, L. Helm and A. E. Merbach, Inorg. React.
Mech., 2001, 3, 1–23.
22 K. M. Stewart and L. W. McLaughlin, Chem. Commun., 2003, 2934–
2935.
23 S. Ghosh, I. Pignot-Paintrand, P. Dumy and E. Defrancq, Org. Biomol.
Chem., 2009, 7, 2729–2737.
In conclusion it became evident from both fluorescence mea-
surements and gel analysis that metal-mediated DNA assemblies
do not require long and flexible alkyl chain linkers between the
metal chelator and the nucleic acids. Even a short linker, as the
acetylene linker, allows dimerization and formation of stable and
larger assemblies of terpy-dU-modified DNA in the presence of
Ni2+ and Fe2+. Internal metal-mediated base pairing between two
terpy-dU modifications interfere with the formation of higher
DNA assemblies. This problem can be solved by placing two
terpy-dU modifications not exactly opposite to each other in two
24 J. S. Choi, C. W. Kang, K. Jung, J. W. Yang, Y. G. Kim and H. Y. Han,
J. Am. Chem. Soc., 2004, 126, 8606–8607.
25 A. P. H. J. Schenning and E. W. Meijer, Chem. Commun., 2005, 3245–
3258.
26 L. Kalachova, R. Pohl and M. Hocek, Synthesis, 2009, 105–112;
L. Kalachova, R. Pohl and M. Hocek, Org. Biomol. Chem, 2011,
DOI: 10.1039/c1ob06359f.
27 C. Brotschi and C. J. Leumann, Angew. Chem., Int. Ed., 2003, 42, 1655–
1658.
28 S. Hainke and O. Seitz, Angew. Chem., Int. Ed., 2009, 48, 8250–8253.
29 J. R. Burns, J. Zekonyte, G. Siligardi, R. Hussain and E. Stulz,
Molecules, 2011, 16, 4912–4922.
48 | Org. Biomol. Chem., 2012, 10, 46–48
This journal is
The Royal Society of Chemistry 2012
©