ACS Catalysis
Page 6 of 8
Manufacturers. Green Chem. 2007, 9, 411–420.
(18)
Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. Monodisperse
Nickel Nanoparticles and Their Catalysis in Hydrolytic
Dehydrogenation of Ammonia Borane. J. Am. Chem. Soc. 2010,
132, 1468–1469.
Yang, H.; Bradley, S. J.; Chan, A.; Waterhouse, G. I. N.; Nann,
T.; Kruger, P. E.; Telfer, S. G. Catalytically Active Bimetallic
Nanoparticles Supported on Porous Carbon Capsules Derived
From Metal–Organic Framework Composites. J. Am. Chem. Soc.
2016, 138, 11872–11881.
Pattadar, D. K.; Zamborini, F. P. Size Stability Study of
Catalytically Active Sub-2 Nm Diameter Gold Nanoparticles
Synthesized with Weak Stabilizers. J. Am. Chem. Soc. 2018, 140,
14126–14133.
Plieth, W. J. Electrochemical Properties of Small Clusters of
Metal Atoms and Their Role in the Surface Enhanced Raman
Scattering. J. Phys. Chem. 1982, 86, 3166–3170.
Handa, S.; Fennewald, J. C.; Lipshutz, B. H. Aerobic Oxidation
in Nanomicelles of Aryl Alkynes, in Water at Room Temperature.
Angew. Chem., Int. Ed. 2014, 53, 3432–3435.
Golovanov, I. B.; Zhenodarova, S. M. Quantitative Structure-
Property Relationship: XXIII. Solubility of Oxygen in Organic
Solvents. Russ. J. Gen. Chem. 2005, 75, 1795–1797.
Budgin, A. M.; Kabachii, Y. A.; Shifrina, Z. B.; Valetsky, P. M.;
Kochev, S. S.; Stein, B. D.; Malyutin, A.; Bronstein, L. M.
Functionalization of Magnetic Nanoparticles with Amphiphilic
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(19)
Financial support provided by the University of Louisville,
Kentucky Science and Engineering Foundation as per grant
agreement #KSEF-148-502-17-396 with the Kentucky Science and
Technology Corporation, ORAU, and Novartis Pharmaceuticals is
warmly acknowledged.
(20)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(21)
(22)
(23)
(24)
(1)
Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic
Organic Reactions in Water toward Sustainable Society. Chem.
Rev. 2018, 118, 679–746.
Lipshutz, B. H.; Isley, N. A.; Fennewald, J. C.; Slack, E. D. On
the Way Towards Greener Transition-Metal-Catalyzed Processes
as Quantified by E Factors. Angew. Chem., Int. Ed. 2013, 52,
10952–10958.
Constable, D. J. C.; Jimenez-Gonzalez, C.; Henderson, R. K.
Perspective on Solvent Use in the Pharmaceutical Industry. Org.
Process Res. Dev. 2007, 11, 133–137.
Xi, Z.; Bazzi, H. S.; Gladysz, J. A. Activation of Single-
Component Nickel(II) Polyethylene Catalysts via Phase Transfer
of Fluorous Phosphine Ligands. J. Am. Chem. Soc. 2015, 137,
10930–10933.
Oh, K.; Mériadec, C.; Lassalle-Kaiser, B.; Dorcet, V.; Fabre, B.;
Ababou-Girard, S.; Joanny, L.; Gouttefangeas, F.; Loget, G.
Elucidating the Performance and Unexpected Stability of
Partially Coated Water-Splitting Silicon Photoanodes. Energy
Environ. Sci. 2018, 11, 2590–2599.
Clement, N. D.; Cavell, K. J.; Jones, C.; Elsevier, C. J. Oxidative
Addition of Imidazolium Salts to Ni(0) and Pd(0): Synthesis and
Structural Characterization of Unusually Stable Metal–Hydride
Complexes. Angew. Chem., Int. Ed. 2004, 43, 1277–1279.
Handa, S.; Slack, E. D.; Lipshutz, B. H. Nanonickel-Catalyzed
Suzuki–Miyaura Cross-Couplings in Water. Angew. Chem., Int.
Ed. 2015, 54, 11994–11998.
Metin, Ö.; Özkar, S. Water Soluble Nickel(0) and Cobalt(0)
Nanoclusters Stabilized by Poly(4-Styrenesulfonic Acid-Co-
Maleic Acid): Highly Active, Durable and Cost Effective
Catalysts in Hydrogen Generation from the Hydrolysis of
Ammonia Borane. Int. J. Hydrogen Energy 2011, 36, 1424–1432.
Ananikov, V. P. Nickel: The “Spirited Horse” of Transition Metal
Catalysis. ACS Catal. 2015, 5, 1964–1971.
Su, B.; Cao, Z.-C.; Shi, Z.-J. Exploration of Earth-Abundant
Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive
Chemical Bond Activations. Acc. Chem. Res. 2015, 48, 886–896.
Gladysz, J. A. Recoverable Catalysts. Ultimate Goals, Criteria of
Evaluation, and the Green Chemistry Interface. Pure Appl. Chem.
2001, 73, 1319–1324.
Ruan, Z.; Lackner, S.; Ackermann, L. Nickel-Catalyzed C–H
Alkynylation of Anilines: Expedient Access to Functionalized
Indoles and Purine Nucleobases. ACS Catal. 2016, 6, 4690–4693.
Heijnen, D.; Gualtierotti, J.-B.; Hornillos, V.; Feringa, B. L.
Nickel-Catalyzed Cross-Coupling of Organolithium Reagents
with (Hetero)Aryl Electrophiles. Chem.–A Eur. J. 2016, 22,
3991–3995.
Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. Rapid Nickel-
Catalyzed Suzuki−Miyaura Cross-Couplings of Aryl Carbamates
and Sulfamates Utilizing Microwave Heating. J. Org. Chem.
2011, 76, 1507–1510.
Keim, W. Nickel: An Element with Wide Application in
Industrial Homogeneous Catalysis. Angew. Chem., Int. Ed. 1990,
29, 235–244.
Hayler, J. D.; Leahy, D. K.; Simmons, E. M. A Pharmaceutical
Industry Perspective on Sustainable Metal Catalysis.
Organometallics 2019, 38, 36–46.
(2)
(3)
(4)
Block
Copolymers:
Self-Assembled
Thermoresponsive
Submicrometer Particles. Langmuir 2012, 4142–4151.
Bronstein, L. M.; Atkinson, J. E.; Malyutin, A. G.; Kidwai, F.;
Stein, B. D.; Morgan, D. G.; Perry, J. M.; Karty, J. A.
Nanoparticles by Decomposition of Long Chain Iron
Carboxylates: From Spheres to Stars and Cubes. Langmuir 2011,
27, 3044–3050.
The Role of Protective Groups in Organic Synthesis. Protective
Groups in Organic Synthesis, 3rd ed.; Greene, T. W.; Wuts, P. G.
M. Eds.; Wiley VCH 1999, P1-15,.
Humphrey, G. R.; Pye, P. J.; Zhong, Y.-L.; Angelaud, R.; Askin,
D.; Belyk, K. M.; Maligres, P. E.; Mancheno, D. E.; Miller, R.
A.; Reamer, R. A.; Weissman, S. A. Development of a Second-
Generation, Highly Efficient Manufacturing Route for the HIV
Integrase Inhibitor Raltegravir Potassium. Org. Process Res. Dev.
2011, 15, 73–83.
(25)
(5)
(6)
(26)
(27)
(7)
(8)
(28)
(29)
(30)
Jarowicki, K.; Kocienski, P. Protecting Groups. J. Chem. Soc.
Perkin Trans. 1 1998, 23, 4005–4037.
Schelhaas, M.; Waldmann, H. Protecting Group Strategies in
Organic Synthesis. Angew. Chem., Int. Ed. 1996, 35, 2056–2083.
Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.;
VandeVondele, J.; Ekinci, Y.; van Bokhoven, J. A. Catalyst
Support Effects on Hydrogen Spillover. Nature 2017, 541, 68.
Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle Arrays on
Surfaces for Electronic, Optical, and Sensor Applications.
ChemPhysChem 2000, 1, 18–52.
(9)
(10)
(31)
(32)
(11)
(12)
(13)
Kuehnel, M. F.; Lentz, D.; Braun, T. Synthesis of Fluorinated
Building
Blocks
by
Transition-Metal-Mediated
Hydrodefluorination Reactions. Angew. Chem., Int. Ed. 2013, 52,
3328–3348.
Identity of many such compounds will be disclosed in future since
it is an intellectual property of industry. However, compounds 48
and 49 are disclosed for a reference.
(33)
(14)
(15)
(16)
(17)
Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, Jr., J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.;
Pearlman, B. A.; Wells, A.; Zaksh, A.; Zhang, T. Y. Key Green
Chemistry Research Areas—a Perspective from Pharmaceutical
ACS Paragon Plus Environment