124
B.A. Shainyan, E. Kleinpeter / Tetrahedron 68 (2012) 114e125
7. Girichev, G. V.; Giricheva, N. I.; Bodi, A.; Gudnason, P. I.; Jonsdottir, S.; Kvaran,
A.; Arnason, I.; Oberhammer, H. Chem.dEur. J. 2007, 13, 1776e1783.
1 atm of pressure. Unscaled zero point vibrational energies (ZPVE)
were used for the calculation of thermodynamic parameters.
ꢁ
8. Girichev, G. V.; Giricheva, N. I.; Bodi, A.; Gudnason, P. I.; Jonsdottir, S.; Kvaran,
ꢁ
A.; Arnason, I.; Oberhammer, H. Chem.dEur. J. 2009, 15, 8929e8931.
ꢁ
ꢁ
9. WallevikO, S.; Bjornsson, R.; Kvaran, A.; Jonsdottir, S.; Arnason, I.; Belyakov, A. V.;
4. Conclusions
Baskakov, A. A.; Hassler, K.; Oberhammer, H. J. Phys. Chem.
2127e2135.
A 2010, 114,
The conformational equilibria of 1-phenyl-1-silacyclohexane
1, 3-phenyl-1,3-thiasila-cyclohexane 2, 1-methyl-1-phenyl-1-
silacyclohexane 3, and 3-methyl-3-phenyl-1,3-thiasilacyclohexane
4 were studied by low temperature 13C NMR spectroscopy down
to 103 K and theoretical computations. The predominant con-
formers of the Me,PheSi disubstituted compounds 3 and 4 are
those with the equatorial phenyl group, as distinct from 1-methyl-
1-phenylcyclohexane 6. This occurs due to the longer SieC bonds
that allows rotation of the equatorial phenyl group about the SieCi
bond to minimize its repulsive interactions with all SieCHa hy-
drogen atoms, which is impossible in phenylcyclohexane 6 because
of H.o Me repulsive interactions. The equilibrium constants for
compounds 1, 2, 3, and 4 are 3.00e3.35, 19, 1.63e1.78 and 2.12,
respectively. The barriers to direct ring inversion (from the less
populated to the more populated conformer) are 5.2e6.0 and the
reverse barriers 5.4e6.0 kcal molꢀ1. The ring inversion barrier of 1-
phenyl-1-silacyclohexane 1 (5.4e5.7 kcal molꢀ1) is much lower
than that of phenylcyclohexane (8.8 kcal molꢀ1).44
The analysis of the problem of additivity of conformational en-
ergies in the geminally substituted silacyclohexanes versus cyclo-
hexanes has shown that, in general, the conformational effects in
silacyclohexanes are much closer to additivity than in their car-
bocyclic analogs. In both series, maximum deviation from additiv-
ity is observed for the Ph-substituted species, since rotation of the
phenyl group, as an asymmetric rotor, leads to substantial varia-
tions of nonbonded interactions in the molecule. The homo-
desmotic reactions approach proved that the deviations from
thermoneutrality (or additivity of conformational effects) increase
10. Wiberg, K. B.; Hammer, J. D.; Castejon, H.; Bailey, W. F.; DeLeon, E. L.; Jarret, R.
M. J. Org. Chem. 1999, 64, 2085e2095.
11. Schneider, H.-J.; Hoppen, V. J. Org. Chem. 1978, 43, 3866e3873.
12. Carcenac, Y.; Diter, P.; Wakselman, C.; Tordeux, M. New J. Chem. 2006, 30, 442e446.
13. Weldon, A. J.; Tschumper, G. S. Int. J. Quantum Chem. 2007, 107, 2261e2265.
14. Bjornsson, R.; Arnason, I. Phys. Chem. Chem. Phys. 2009, 11, 8689e8697.
15. Bodi, A.; Bjornsson, R.; Arnason, I. J. Mol. Struct. 2010, 978, 14e19.
16. Kirpichenko, S. V.; Kleinpeter, E.; Ushakov, I. A.; Shainyan, B. A. J. Phys. Org.
Chem. 2011, 24, 320e326.
17. Colvin, E. W. Silicon in Organic Synthesis; Academic: London, 1988; Ch. 10.
18. Handy, C. J.; Manoso, A. S.; McElroy, W. T.; Seganish, W. M.; DeShong, P. Tet-
rahedron 2005, 61, 12201e12225.
19. Sieburth, S. McN.; Chen, C.-A. Eur. J. Org. Chem. 2006, 311e322.
20. Rousseau, G.; Blanco, L. Tetrahedron 2006, 62, 7951e7993.
21. Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486e1499.
22. Rosas-Garsia, V. M.; Lopes-Cortina, S. T.; Chavarria-Resendez, A. J. Mol. Struct.
(Theochem) 2010, 958, 133e136.
23. Allinger, N. L.; Tribble, M. T. Tetrahedron Lett. 1971, 12, 3259e3262.
24. Hodgson, D. J.; Rychlewska, U.; Eliel, E. L.; Manoharan, M.; Knox, D. E.; Olefir-
owicz, E. M. J. Org. Chem. 1985, 50, 4838e4843.
25. Senderowitz, H.; Guarnieri, F.; Still, W. C. J. Am. Chem. Soc. 1995, 117, 8211e8219.
26. Wiberg, K. B.; Castejon, H.; Bailey, W. F.; Ochterski, J. J. Org. Chem. 2000, 65,
1181e1187.
27. Abraham, R. J.; Bergen, H. A.; Chadwick, D. J. Tetrahedron Lett.1981, 29, 2807e2810.
28. Eliel, E. I.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: New York,
NY, 1994; 1267 p.
29. Juaristi, E.; Ordonez, M. Tetrahedron 1994, 50, 4937e4948.
30. Oliveira, P. R.; Rittner, R. Spectrochim. Acta, Part A 2005, 62, 30e37.
31. Oliveira, P. R.; Rittner, R. Magn. Reson. Chem. 2008, 46, 250e255.
32. Eliel, E. I.; Enanoza, R. M. J. Am. Chem. Soc. 1972, 94, 8072e8081.
33. Eliel, E. I.; Manoharan, M. J. Org. Chem. 1981, 46, 1959e1962.
ꢁ
ꢁ
34. Wallevik, S. O.; Bjornsson, R.; Kvaran, A.; Jonsdottir, S.; Girichev, G. V.; Gir-
icheva, N. L.; Hassler, K.; Arnason, I. J. Mol. Struct. 2010, 978, 209e219.
35. Kirpichenko, S. V.; Albanov, A. I.; Pestunovich, V. A. J. Sulfur Chem. 2004, 25,
21e27.
36. Freeman, F.; Cha, C.; Fang, C.; Huang, A. C.; Hwang, J. H.; Louie, P. L.; Shainyan,
B. A. J. Phys. Org. Chem. 2005, 18, 35e48.
37. Shainyan, B. A.; Ushakov, I. A.; Suslova, E. N. J. Sulfur Chem. 2006, 27, 3e13.
38. Kirpichenko, S. V.; Kleinpeter, E.; Shainyan, B. A. J. Phys. Org. Chem. 2010, 23,
859e865.
linearly with the dihedral angle
a characterizing the rotation of the
phenyl ring about the CePh or SiePh bond.
39. Shainyan, B. A. Int. J. Quantum Chem. 2007, 107, 189e199 and refs. cited therein.
40. Shainyan, B. A.; Suslova, E. N.; Kleinpeter, E. J. Phys. Org. Chem. 2011, 24,
698e704.
Acknowledgements
41. Shainyan, B. A.; Suslova, E. N.; Kleinpeter, E. J. Phys. Org. Chem. (published on-
42. Kirpichenko, S. V.; Albanov, A. I. J. Organomet. Chem. 2010, 695, 663e666.
43. Pihlaja, K.; Kleinpeter, E. Carbon-13 chemical shifts in structural and stereo-
chemical analysis In Methods in Stereochemical Analysis; Marchand, A. P., Ed.;
VCH: New York, NY, 1994.
The financial support of this work by the Russian Foundation for
Basic Research and Deutsche Forschungsgemeinschaft (Grant
RFBR-DFG No. 11-03-91334) is gratefully acknowledged. We thank
Dr. Matthias Heydenreich and Dipl.-Ing (FA) Angela Krtitschka
(University of Potsdam) for preparing the freon samples, recording
the low temperature spectra and PERCH simulation of the room
temperature 1H NMR spectrum, and Dr. Svetlana Kirpichenko
(Irkutsk Institute of Chemistry) for synthesis of compounds and
helpful discussion.
44. Squillacote, M. E.; Neth, J. M. J. Am. Chem. Soc. 1987, 109, 198e202.
ꢁ
ꢁ
ꢁ
45. Cortes-Guzman, F.; Hernandez-Trujillo, J.; Cuevas, G. Phys. Chem. Chem. Phys.
2010, 12, 13261e13265.
46. Sakurai, H.; Murakami, M.; Takeuchi, K.; Kabuto, C. J. Organomet. Chem. 1988,
341, 133e143.
47. Bushweller, C. H. In Conformational Behavior of Six-Membered Rings. Analysis,
Dynamics, and Stereoelectronic Effects; Juaristi, E., Ed.; Wiley-VCH: New York, NY,
1995; pp 25e58.
48. Mazaleyrat, J. P.; Welvart, Z. J. Chem. Soc. D: Chem. Commun. 1969, 485e486.
49. Sicsic, S.; Welvart, Z. J. Chem. Soc. D: Chem. Commun. 1966, 499e500.
50. Uebel, J. J.; Goodwin, H. W. J. Org. Chem. 1968, 33, 3317e3319.
51. Allinger, N. L.; Liang, C. D. J. Org. Chem. 1968, 33, 3319e3321.
52. Allinger, N. L.; Liang, C. D. J. Org. Chem. 1967, 32, 2391e2394.
53. George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Theor. Chim. Acta 1975, 38,
121e129.
Supplementary data
HMQC NMR spectrum of 1, simulated 1H NMR spectra of 2, re-
sults of calculations of compounds 1e8. Supplementary data as-
sociated with this article can be found in online version, at
54. George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Tetrahedron 1976, 32,
317e323.
55. West, R. J. J. Am. Chem. Soc. 1954, 76, 6012e6014.
56. Holmes-Smith, R. D.; Stobart, S. R. J. Chem. Soc., Dalton Trans. 1982, 2461e2468.
57. Shanan-Atidi, H.; Bar-Eli, K. H. J. Phys. Chem. 1970, 74, 961e963.
58. Binsch, G.; Kessler, H. Angew. Chem. 1980, 92, 445e463.
References and notes
1. Hermanns, J.; Schmidt, B. J. Chem. Soc., Perkin Trans. 1 1998, 2209e2230.
2. Hermanns, J.; Schmidt, B. J. Chem. Soc., Perkin Trans. 1 1999, 81e102.
3. Arnason, I.; Kvaran, A.; Jonsdottir, S.; Gudnason, P. I.; Oberhammer, H. J. Org.
Chem. 2002, 67, 3827e3831.
4. Favero, L. B.; Velino, B.; Caminati, W.; Arnason, I.; Kvaran, A Organometallics
2006, 25, 3813e3816.
€
59. Sandstrom, J. Dynamic NMR Spectroscopy; Academic: London, 1982; 226 p.
60. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
ꢁ
ꢁ
ꢁ
ꢁ
5. Favero, L. B.; Velino, B.; Caminati, W.; Arnason, I.; Kvaran, A J. Phys. Chem. A
2006, 110, 9995e9999.
ꢁ
ꢁ
6. Bodi, A.; Kvaran, A.; Jonsdottir, S.; Antonsson, E.; Wallevik, S. O.; Arnason, I.;
€
Belyakov, A. V.; Baskakov, A. A.; Holbling, M.; Oberhammer, H. Organometallics
2007, 26, 6544e6550.