788
Synthesis, Characterization and Photovoltaic Properties of Di-Anchoring Organic Dyes
J. Braz. Chem. Soc.
the conduction band of TiO2 are transported toward
the counter electrode through the external load. At the
counter electrode, a redox couple is utilized (usually
iodide-triiodide) to regenerate the dye so the process
can be repeated.
7. Ferreira, J.; Girotto, E. M.; J. Braz. Chem. Soc. 2010, 21, 312.
8. Kulkarni,A. P.; Tonzola, C. J.; Babel,A.; Jenekhe, S.A.; Chem.
Mater. 2004, 16, 4556.
9. Wu, T.-Y.; Lee, N.-C.; Chen, Y.; Synth. Met. 2003, 139, 263.
10. Wu, T.-Y.; Tsao, M. H.; Chen, F. L.; Su, S. G.; Chang, C. W.;
Wang, H. P.; Lin,Y. C.; Ou-Yang, W.-C.; Sun, I. W.; Int. J. Mol.
Sci. 2010, 11, 329.
Conclusion
11. Chen, Z.; Li, F.; Huang, C.; Curr. Org. Chem. 2007, 11, 1241.
12. Yahagida, S.; Senadeera, G. K. R.; Nakamura, K.; Kitamura,
T.; Wada, Y.; J. Photoch. Photobio. A 2004, 166, 75.
13. Hara, K.; Tachibana,Y.; Ohga,Y.; Shinpo,A.; Suga, S.; Sayama,
K.; Sugihara, H.; Arakawa, H.; Sol. Energ. Mat. Sol. C. 2003,
77, 89.
We synthesized three di-anchoring organic dyes
containing carbazole, iminodibenzyl and phenothiazine
units, respectively, as donors to compare and study their
optical, electrochemical and photovoltaic properties. The
electron-donating groups of organic sensitizers show
different interactions on a TiO2 surface. The LUMO values
of S1 (–1.92 V), S2 (–1.85 V) and S3 (–1.63 V) are more
than 0.2 eV negative than the conduction band edge of
TiO2 (−0.5 V vs. NHE), implying that the driving force
is sufficient for efficient charge injection. The HOMO
values of S1 (0.64 V), S2 (0.62 V) and S3 (0.55 V) are
sufficiently more positive than the I3−/I− redox potential
(0.42 V vs. NHE). DSSCs based on the S3 dye showed the
best photovoltaic performance: a maximum IPCE of 58%,
a short-circuit photocurrent density (Jsc) of 10.60 mA cm-2,
a Voc of 0.658 V and a FF of 0.7, corresponding to an
overall conversion efficiency of 4.91% under 100 mW cm-2
irradiation. The proposed di-anchoring organic dyes are
promising candidates for DSSCs.
14. Horiuchi, T.; Miura, H.; Uchida, S.; Chem. Commun. 2003,
3036.
15. Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.;
Abe, Y.; Suga, S.; Arakawa, H.; J. Phys. Chem. B 2002, 106,
1363.
16. Yao, Q.-H.; Shan, L.; Li, F.-Y.; Yin, D.-D.; Huang, C.-H.;
New J. Chem. 2003, 27, 1277.
17. Jung, I.; Lee, J. K.; Song, K. H.; Song, K.; Kang, S. O.; Ko, J.;
J. Org. Chem. 2007, 72, 3652.
18. Alam, M. M.; Jeneke, S. A.; Chem. Mater. 2002, 14, 4775.
19. Babel, A.; Jenekhe, S. A.; J. Phys. Chem. B 2003, 107, 1749.
20. Fungo, F.; Jenekhe, S. A.; Bard, A. J.; Chem. Mater. 2003, 15,
1264.
21. Sapp, S.A.; Sotzing, G.A.; Reynolds, J. R.; Chem. Mater. 1998,
10, 2101; Fungo, F.; Jenekhe, S. A.; Bard, A.; J. Chem. Mater.
2004, 15, 1264.
Supplementary Information
22. Wu, T.-Y.; Chen, Y.; J. Polym. Sci. Pol. Chem. 2002, 40, 4452.
23. Wu, T.-Y.; Tsao, M. H.; Chen, F. L.; Su, S. G.; Chang, C. W.;
Wang, H. P.; Lin, Y. C.; Sun, I. W.; J. Iran. Chem. Soc. 2010,
7, 707.
Supplementary data are available free of charge as PDF
Acknowledgement
24. Jang, S.Y.; Seshadri, V.; Khil, M. S.; Kumar, A.; Marquez, M.;
Mather, P. T.; Sotzing, G. A.; Adv. Mater. 2005, 17, 2177.
25. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-
Baker, R.; Grätzel, M.; J. Phys. Chem. B 2003, 107, 14336.
26. Matsui, M.; Hashimoto, Y.; Funabiki, K.; Jin, J.; Yoshida, T.;
Minoura, H.; Synth. Met. 2005, 148, 147.
The authors would like to thank the National Science
Council of the Republic of China for financially supporting
this project.
References
27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, Jr. J. R.; Montgomery, J. A.;Vreven,
T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.;
Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox,
J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
1. Shirota, Y.; J. Mater. Chem. 2005, 15, 75.
2. Aquino, J. M.; Rocha-Filho, R. C.; Bocchi, N.; Biaggio, S. R.;
J. Braz. Chem. Soc. 2010, 21, 324.
3. Ensafi, A. A.; Hajian, R.; Ebrahimi, S.; J. Braz. Chem. Soc.
2009, 20, 266.
4. Wu, T.Y.; Wang, H. C.; Su, S. G.; Gung, S. T.; Lin, M. W.; Lin,
C. B.; J. Chin. Chem. Soc. 2010, 57, 44.
5. Peralta-Zamora, P.; J. Braz. Chem. Soc. 2010, 21, 1621.
6. Paprocki, A.; dos Santos, H. S.; Hammerschitt, M. E.; Pires,
M.; Azevedo, C. M. N.; J. Braz. Chem. Soc. 2010, 21, 452.