Regioselective Olefin Acylation
COMMUNICATION
resulted in construction of Oppolzerꢁs intermediate 11[33] in
good yield. Oppolzer has converted 11 to modhephene
through a stereospecific ene cyclization to Dreidingꢁs pro-
pellane intermediate (12).[34]
I. Kuwajima, Tetrahedron Lett. 1986, 27, 719–722; b) S. E. Den-
Germanas, Tetrahedron Lett. 1984, 25, 1231–1234; c) K. Fukuzaki,
[5] a) For an early report of activation of acylhalides using silver tetra-
fluoroborate and subsequent Kondakov–Daarzens reaction, see:
W. A. Smit, A. V. Semonovsky, V. F. Kucherov, T. N. Chernova,
3106; b) J.-M. Weibel, A. Blanc, P. Pale in Silver in Organic Chemis-
try (Ed.: M. Harmata), Wiley, New York, 2010, Chapter 10.
[6] For a review of spirocycle synthesis in terpene natural products see:
In conclusion, we report the intramolecular and intermo-
lecular Kondakov–Darzens reactions in which mild activa-
tion of the intermediate acyl halide is achieved using silver
triflate. This transformation provides a rapid assembly of
enones, including benzoxepinones. Competition experiments
are consistent with cyclization via formation of the more
stable carbocation intermediate, followed by a slight prefer-
ence for formation of six-membered rings. Tandem acylation
and Nazarov cyclization are also demonstrated. Application
of this method in the formal syntheses of cuparene and
modhephene demonstrates the utility of this method.
[7] a) K. C. Nicolaou, T. Montagnon, P. S. Baran, Y.-L. Zhong, J. Am.
verton, S. L. Friedman, D. L. Whalen, D. M. Jerina, J. Am. Chem.
Experimental Section
[8] This strategy was employed recently for the synthesis of 3-chlorocy-
clopentenones; see Reference [3f].
[9] For recent discussions of the gem-dimethyl effect see: a) L. Ringer,
bracht, Sci. Synth. 2009, 48, 393–438.
[11] a’-Arylation of enones has not, to our knowledge, been reported;
aryl nucleophile conjugate addition is facile with transition-metal
catalysis. For reviews of catalytic conjugate additions, see: a) N.
Freshly distilled oxalyl chloride (94 mL, 1.1 mmol, 1.1 equiv) was added
to a stirred solution of 2,2-diphenylpent-4-enoic acid (250 mg, 1.0 mmol,
1.0 equiv) and one drop of DMF in dry dichloromethane (5 mL) at room
temperature, under N2. After 15 min, the solvent was removed in vacuo.
Fresh CH2Cl2 (5 mL) was introduced, and the solution was added,
through a syringe, to stirring silver triflate (280 mg, 1.1 mmol, 1.1 equiv)
under nitrogen. The reaction mixture was stirred for two hours, after
which time triethylamine (150 mL, 1.1 mmol, 1.1 equiv) was added. The
mixture was stirred for 15 min and was then purified by flash chromatog-
raphy on silica gel, eluting with 30% Et2O/pentane (Rf =0.74), to afford
1a as a white solid (203 mg, 87%). M.p. 86–878C; 1H NMR (500 MHz,
CDCl3): d=7.85 (dt, J=1H), 7.31–7.20 (m, 10H), 6.27 (dt, J=5.6,
2.6 Hz, 1H), 3.51 ppm (d, J=2.4 Hz, 2H); 13C NMR (125 MHz, CDCl3):
d=209.0, 162.5, 143.4, 133.0, 128.7, 128.2, 126.9, 60.1, 48.0 ppm; IR (KBr
pellet): v˜ =3054, 2987, 2306, 1706, 1492, 1444, 1421, 1265 cmÀ1; HRMS
(ESI): m/z: calcd for C17H14ONa: 257.0942 [M+Na]+; found: 257.0942.
[12] Treatment of enones with base can result in competing a’- and g-de-
protonation. For discussions, see: a) J. E. Bartmess, J. P. Kiplinger, J.
[15] For strategies for enantioselective synthesis of 2b, see: a) Use of the
Boeckman auxiliary: R. K. Boeckman, Jr., J. E. Pero, D. J. Boehm-
ler, J. Am. Chem. Soc. 2006, 128, 11032–11033; b) Resolution of
propionic acid 2b: S. K. Shah, N. Chen, R. N. Ravindra, S. G. Mills,
L. Malkowitz, M. S. Springer, S. L. Gould, J. A. DeMartino, A. Care-
lla, G. Carver, K. Holmes, W. A. Schleif, R. Danzeisen, D. Hazuda,
J. Kessler, J. Lineberger, M. Miller, E. A. Emini, M. MacCoss,
Acknowledgements
This work was supported by an NSF CAREER Award (CHE-0847273).
We thank Dr. John Greaves for mass spectrometric analyses.
Keywords: acylation · cuparene · enones · modhephene ·
regioselectivity · tandem acylation–Nazarov
[16] V. Dumontet, O. Thoison, O. R. Omobuwajo, M.-T. Martin, G. Per-
romat, A. Chiaroni, C. Riche, M. Paꢂs, T. Sꢃvenet, A. H. A. Hadi,
[1] a) J. Kondakov, J. Russ. Phys. Chem. Soc. 1894, 26, 5; b) G. Darzens,
Compt. Rend. 1910, 150, 707.
[17] a) M. Lu King, C. C. Chang, H. C. Ling, E. Fugita, M. Ochiai, A. T.
Hwang, B.-N. Su, H. Chai, Q. Mi, L. B. S. Kardono, J. J. Afriastini, S.
Riswan, B. D. Santarsiero, A. D. Mesecar, R. Wild, C. R. Fairchild,
G. D. Vite, W. C. Rose, N. R. Farnsworth, G. A. Cordell, J. M. Pezzu-
3358; c) S. K. Lee, B. Cui, R. R. Mehta, A. D. Kinghorn, J. M. Pezzu-
[18] V. K. Tandon, K. A. Singh, A. K. Awasthi, J. M. Khanna, B. Lal, N.
[19] J. Pandey, M. Mishra, S. S. Bisht, A. Sharma, R. T. Tripathi, Tetrahe-
[3] a) H. O. House, Modern Synthetic Reactions, 2nd ed., W. A Benja-
1972, 1, 73–97; c) M. V. Luzgin, V. N. Romannikov, A. G. Stepanov,
gendrappa, Ind. J. Chem. Sec. B: Org. Chem. Incl. Med. Chem. 1997,
36, 691–694; e) E. Armengol, A. Corma, L. Fernandez, H. Garcia,
lin, C.-Y. Chen, R. A. Reamer, P. G. Dormer, I. W. Davies, J. Org.
Chem. Eur. J. 2011, 17, 12912 – 12916
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
12915