TETRAFLUOROTEREPHTHALATE COMPLEX
1303
Epa = –0.476 V and Epc = –0.796 V (vs. SCE) respectively, 12. Serpaggi, F.; Ferey, G. Hybrid open frameworks (MIL-n). Part 4. Synthesis
which corresponds to a CoIII/CoII redox process.[37] The value
of the half-wave potential, E1/2, was calculated to be –0.636 V.
and crystal structure of MIL-8, a series of lanthanide glutarates with an
open framework, [Ln(H2O)]2[O2C(CH2)3CO2]3·4H2O. J. Mater. Chem.
1998, 8, 2737–2741.
The ratio of ipa and ipc is 0.82. The peak separation between
13. Wang, Z.J.; Kravtsov, V.C.; Walsh, R.B.; Zaworotko, M.J. Guest-
the anodic and cathodic peaks at a scan rate 100 mV s−1 is 320
dependent cavities in two-dimensional metal-organic frameworks sustained
by tetrafluoro-1,3-benzenedicarboxylate. Crystal Growth Design 2007, 7,
1154–1162.
mV. These features are indicative of a quasi-reversible CoIII/CoII
redox process.
14. Ji, Y.B.; Soon, W.L. A porous, two-dimensional copper coordination-
polymer containing guest molecules: Hydrothermal synthesis, struc-
ture, and thermal property of [Cu(BDC)(bipy)](BDCH2) (BDC = 1,4-
benzenedicarboxylate; BIPY = 4,4ꢁ-Bipyridine). Inorg. Chem. Commun.
2003, 6, 313–316.
15. Shi, W.J.; Hou, L.; Li, D.; Yin, Y.G. Supramolecular assembly driven
by hydrogen-bonding and π–π stacking interactions based on copper(II)-
terpyridyl complexes. Inorg. Chim. Acta 2007, 360, 588–598.
16. Li, W.; Li, M.X.; Shao, M.; Zhu, S.R. Microporous metal–organic frame-
works constructed by Cu(I)/Zn(II), Tpt and 1,4-benzenedicarboxylate. In-
org. Chem. Commun. 2007, 10, 753–756.
CONCLUSION
In conclusion, a one-dimensional straight-chain coordination
polymer [Co(tfbdc) (DMF)2(H2O)2] was readily prepared via
reaction of Co(NO3)2·6H2O with ligand of H2tfbdc in the mix-
ture solvent of DMF and anhydrous ethanol. The electrochemi-
cal behavior of the title complex is a quasi-reversible CoIII/CoII
redox process.
17. Yang, X.P.; Richard, A.J.; Joseph, H.R.; Lai, R.P.J. Syntheses, structures
and luminescent properties of new lanthanide-based coordination poly-
mers based on 1,4-benzenedicarboxylate (bdc). Dalton Trans. 2007, 3936–
3942.
SUPPLEMENTARY MATERIAL
CCDC 705175 for [Co(tfbdc)(DMF)2(H2O)2] contains
the supplementary crystallographic data for this pa-
per. These data can be obtained free of charge at
bridge Crystallographic Data Center, 12, Union Road, Cam-
bridge CB21EZ, UK; fax (Internet) +44-1223/336-033; e-mail:
deposit@ccdc.cam.ac.uk].
18. Mark, E.; Robert, M.; Alexandra, S.M.Z.; Lightfoot, P.; Wright, P.A.
solid-state transformations of zinc 1,4-benzenedicarboxylates mediated by
hydrogen-bond-forming molecules. Chem. Eur. J. 2001, 7, 5168–5175.
19. Mohamed, E.; Jaheon, K.; Michael, O.K. Cu2[o-Br-C6H3(CO2)2]2
(H2O)2·(DMF)8(H2O)2: A framework deliberately designed to have the
NbO structure type. J. Am. Chem. Soc. 2002, 124, 376–377.
20. Gao, L.; Zhao, B.J.; Li, G.H.; Shi, Z.; Feng, S.H. Mixed solvothermal syn-
thesis and x-ray characterization of a layered copper coordination polymer,
Cu(H2O)(1,3-BDC)·H2O (BDC = Benzenedicarboxylate). Inorg. Chem.
Commun. 2003, 6, 1249–1251.
REFERENCES
1. Rao, C.N.R.; Natarajan, S.; Vaidhyanathan, R. Metal carboxylates with 21. Xue, D.X.; Lin, Y.Y.; Cheng, X.N.; Chen, X.M. A tetracarboxylate-bridged
open architectures. Angew. Chem. Int. Ed. 2004, 43, 1466–1496.
2. Kitagawa, S.; Kitaura, R.; Noro, S.I. Functional porous coordination poly-
mers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
dicopper(II) paddle-wheel-based 2-D porous coordination polymer with
gas sorption properties. Cryst. Growth Des. 2007, 7, 1332–1336.
22. Susan, A.; Arunendu, M.; Michael, J. 1-D Coordination polymers contain-
ing benzenedicarboxylate. Cryst. Eng. 2001, 4, 25–36.
3. (a) Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe,
M.; Yaghi, O.M. Metal-organic frameworks as new materials for hydro- 23. Padmanabhan, M.; Joseph, K.C.; Thirumurugan, A.; Huang, X.; Emge,
gen storage. Science 2003, 300, 1127–1129. (b) Li, H.-L.; Eddaoudi, M.;
O’Keeffe, M.; Yaghi. O.M. Design and synthesis of an exceptionally stable
and highly porous metal-organic framework. Nature 1999, 402, 276–279.
4. Cheetam, A.K.; Ferey, G.; Loiseau, T. Open-framework inorganic materi-
als. Angew. Chem. Int. Ed. 1999, 38, 3268–3292.
5. Zaworotko, M.J. Superstructural diversity in two dimensions: Crystal engi-
neering of laminated solids. Chem. Commun. 2001, 1–9.
6. Batten, S.R.; Robson, R. Interpenetrating nets: Ordered, periodic entangle-
ment. Angew. Chem. Int. Ed. 1998, 37, 1460–1494.
T.J.; Li, J. One-dimensional zig-zag type coordination polymers of Ni(II)
and Cu(II) containing 1,3-benzenedicarboxylate and 1,3-diaminopropane:
Structural, spectral and thermal studies. Inorg. Chim. Acta 2007, 360,
2583–2588.
24. Cao, R.; Shi, Q.; Sun, D.F.; Hong, M.C.; Bi, W.H.; Zhao, Y.J. Syn-
theses and characterizations of copper(II) polymeric complexes con-
structed from 1,2,4,5-benzenetetracarboxylic acid. Inorg. Chem. 2002, 41,
6161–6168.
25. Ryo, K.; Fumiyasu, I.; Ryotaro, M.; Kitagawa, S.; Kubota, Y.; Takata, M.;
Kobayashi, T.C. Rational design and crystal structure determination of a
3-D metal−organic jungle-gym-like open framework. Inorg. Chem. 2004,
43, 6522–6524.
7. Chui, S.S.-Y.; Lo, S.M.-F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D.
A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n.
Science 1999, 283, 1148–1150.
8. Pan, L.; Parker, B.; Huang, X.Y.; Olson, D.H.; Lee, J.-Y.; Li, J. Zn(tbip)
(H2tbip = 5-tert-Butyl Isophthalic Acid): A highly stable guest-free micro-
porous metal organic framework with unique gas separation capability. J.
Am. Chem. Soc. 2006, 128, 4180–4181.
26. Mitsuhiro, I.; Satoru, O. Versatility of pyridine-2-methanol as a chelating
ligand toward a manganese ion: Synthesis and x-ray structural analysis on
some manganese-pyridine-2-methanol derivatives. Inorg. Chim. Acta 2004,
357, 1039–1046.
9. Pan, L.; Olson, D.H.; Ciemnolonski, L.R.; Heddy, R.; Li, J. Separation of
hydrocarbons with a microporous metal-organic framework. Angew. Chem.
Int. Ed. 2006, 45, 616–619.
10. Hagrman, P.J.; Hagrman, D.; Zubieta, J. Organic-inorganic hybrid ma-
terials: from simple coordination polymers to organodiamine-templated
molybdenum oxides. Angew. Chem. Int. Ed. 1999, 38, 2639–2684.
11. O’Keeffe, M.; Eddaoudi, M.; Reineke, T.; Yaghi, O.M. Frameworks for
27. Rau, S.; B
o¨ttcher, L.; Schebesta, S.; Stollenz, M.; Go¨rls, H.; Walther, D.
Simultaneous cation/anion coordination by bifunctional 1,2-diimine/1,2-
diamine type ligands: Synthesis, structures, and properties of tight ion
pair complexes of ruthenium and iron. Eur. J. Inorg. Chem. 2002,
2800–2809.
28. Cotton, F.A.; Lin, C.; Murillo, C.A. Coupling Mo2n+ units via dicarboxy-
late bridges. J. Chem. Soc. Dalton Trans. 1998, 3151–3154.
extended solids: Geometrical design principles. J. Solid State Chem. 2000, 29. Chen, B.L.; Yang, Y.; Fatima, Z.; Qian, G.D.; Luo, Y.S.; Zhang,
152, 3–20.
J.H.; Lobkovsky, E.B. Enhanced near-infrared−luminescence in an