unexploited avenue, an absence that is all the more curious
given the well-known4 process by which the corresponding
all-carbon diene, cyclopentadienone, is used to access the
benzene ring. The absence of azacyclopentadienone based
pyridine syntheses is undoubtedly related to the difficulties
encountered in accessing this elusive system either in stable
form or from readily available suitable precursors. The
2-azacyclopentadienone ring 1 (see Figure 1) is rare, but its
formation and use are known.5 Of particular relevance to
our work, species 1 has been generated from a polymeric
5-sulfonateof 2-oxopyrrolidine and shown toact asa diene
toward a polymer supported alkyne, allowing access toone
example of a pyridine ring.6 Work by the same group7
gave access to a single example of the even more elusive
3-azacyclopentadienone 2, generated in similar fashion
as an unstable intermediate from a polymeric 1-acyl
3-oxopyrrolidine. A stable 3-thione analogue of azacyclo-
pentadienone 2 has also been reported.8 In view of this
scarcity and lack of applicability, there is a requirement
for new methods which allow the generation of 3-
azacyclopentadienones. We wish to report one such meth-
od in this paper and show that such systems can be used to
generate pyridines.
synthesized as an unstable, but isolable, mixture of diaster-
eoisomers from the reaction of 2-methylthio-4-(4-tolyl)-
1-azetine 5a with diphenylcyclopropenone 6a, a reaction in
which the cyclopropenone acts asan all-carbon 1,3-dipolar
equivalent. The chemistry and applications of cyclo-
propenones9 and their acetals/ketals10 have gained mo-
mentum in recent years, and there are also other reports of
imines reacting with cyclopropenones.11 The topic of
3-carbon 1,3-dipole equivalents is an area of importance
in its own right due to the potential for such processes to
provide access to 5-membered rings in [3 þ 2]-cycloaddition
reactions.12
Table 1. Reaction of Cyclopropenones with 1-Azetines
yield
(%)
[diast.
entry
1
product
Ar
4-Tol
R
R1
Ph
R2
Ph
ratio]
4a
Me
63
[3:2]
63
2
3
4
5
6
7
4b
4c
4d
4e
4f
Ph
Et
Ph
H
Ph
[5:3]
52
Ph
Me
Me
Et
Ph
[6:5]
62
Figure 1. Azacyclopentadienones and bicyclic pyrrolinones.
Ph
Ph
Ph
Ph
n-Bu
Ph
[5:4]
66
4-Tol
2-Naphth
Ph
Ph
Our work started with the synthesis of a range of
azabicyclo systems 3 which incorporate the 3-oxopyrrolidine
moiety. We investigated the azabicyclo[3.2.0]hept-2-
en-4-one system 4 on the basis that this system might
readily yield the desired azacyclopentadienone. Our first
example of this system, compound 4a (Table 1), was
[3:2]
51
Me
Et
Ph
[3:2]
58
4g
n-Bu
[3:2]
(9) (a) Manova, R.; van Beek, T. A.; Zuilhof, H. Angew. Chem., Int.
Ed. 2011, 50, 5428. (b) Orski, S. V.; Poloukhtine, A. A.; Arumugam, S.;
Mao, L. D.; Popik, V. V.; Locklin, J. J. Am. Chem. Soc. 2010, 132, 11024.
(c) Poloukhtine, A. A.; Mbua, N. E.; Wolfert, M. A.; Boons, G. J.;
Popik, V. V. J. Am. Chem. Soc. 2009, 131, 15769.
(10) (a) Qiao, Y.; Chu, T. S. J. Org. Chem. 2011, 76, 3086. (b) Patel,
P. R.; Boger, D. L. Org. Lett. 2010, 12, 3540. (c) Patel, P. R.; Boger, D. L.
J. Am. Chem. Soc. 2010, 132, 8527.
(3) For reviews, see: (a) Keller, P. A. In Comprehensive Heterocyclic
Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor,
R. J. K., Eds.; Elsevier: Oxford, 2008; Vol. 7, pp 217ꢀ308. (b) Hill, M. D.
Chem.;Eur. J. 2010, 16, 12052.
(4) (a) Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chem. Rev.
1965, 65, 261. (b) Hafner, K.; Goliasch, K. Angew. Chem. 1961, 73, 538.
~
(c) Gavina, F.; Costero, A. M.; Gil, P.; Luis, S. V. J. Am. Chem. Soc.
(11) (a) Heimgartner, H.; Stierli, F.; Prewo, R.; Bieri, J. H. Helv.
Chim. Acta 1983, 66, 1366. (b) Eicher, T.; Rohde, R. Synthesis 1985, 619.
(c) Hemming, K.; Redhouse, A. D.; Smalley, R. K.; Thompson, J. R.;
Kennewell, P. D.; Westwood, R. Tetrahedron Lett. 1992, 33, 2231. (d)
Gomaa, M. A.-M. J. Chem. Soc., Perkin Trans. 1 2002, 341. (e) Aly,
A. A.; Hasan, A. A.; Ameen, M. A.; Brown, A. B. Tetrahedron Lett.
2008, 49, 4060. (f) O’Gorman, P. A.; Chen, T.; Cross, H. E.; Naeem, S.;
Pitard, A.; Qamar, M. I.; Hemming, K. Tetrahedron Lett. 2008, 49, 6316.
(12) (a) Boger, D. L.; Brotherton, C. E. J. Am. Chem. Soc. 1986, 108,
6695. (b) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus,
P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317. (c) Grover, H. K.;
Lebold, T. P.; Kerr, M. A. Org. Lett. 2011, 13, 220. (d) Lebold, T. P.;
Kerr, M. A. Org. Lett. 2009, 11, 4354. (e) Scott, M. E.; Lautens, M.
J. Org. Chem. 2008, 73, 8154. (f) Schneider, T. F.; Werz, D. B. Org. Lett.
2011, 13, 1848. (g) Tan, B.; Candeias, N. R.; Barbas, C. F., III. J. Am.
Chem. Soc. 2011, 133, 4672. (h) Trost, B. M.; Bringley, D. A; Silverman,
S. M. J. Am. Chem. Soc. 2011, 133, 7664. (i) See also ref 1a.
1984, 106, 2077. (d) Nantz, M. H.; Fuchs, P. L. J. Org. Chem. 1987, 52,
5298. (e) Yamaguchi, K.; Utsumi, K.; Yoshitake, Y.; Harano, K.
Tetrahedron Lett. 2006, 47, 4235. (f) Haramata, M.; Gomes, M. G.
Eur. J. Org. Chem. 2006, 2273. (g) Pearson, A. J.; Zhou, Y. J. Org. Chem.
2009, 74, 4242.
(5) (a) Murai, M.; Kawai, S.; Miki, K.; Ohe, K. J. Organomet. Chem.
2007, 692, 579. (b) Murai, M.; Miki, K.; Ohe, K. J. Org. Chem. 2008, 73,
9174. (c) Ohno, M.; Sekido, M.; Matsuura, T.; Noda, M. Heterocycl.
Commun. 2007, 13, 273. (d) Yokotsuji, D. L. S.; Dailey, W. P.; Kende,
A. S.; Birzan, L.; Liu, K. J. Phys. Chem. 1995, 99, 15870.
~
(6) Gavina, F.; Costero, A. M.; Andreu, M. R.; Carda, M.; Luis, S. V.
J. Am. Chem. Soc. 1988, 110, 4017.
~
(7) Gavina, F.; Costero, A. M.; Andreu, M. R.; Ayet, M. D. J. Org.
Chem. 1991, 56, 5417.
(8) Koutentis, P. A.; Rees, C. W.; White, A. J. P.; Williams, D. J.
J. Chem. Soc., Perkin Trans. 1 1998, 2765.
Org. Lett., Vol. 14, No. 1, 2012
127