Lipase Inhibition by Stereoisomers of decahydro-2-naphthyl-N-n-butylcarbamate
Protein & Peptide Letters, 2011, Vol. 18, No. 11 1175
[12]
Pleiss, J.; Fischer, M.; Schmid, R. D. Anatomy of lipase binding
sites: the scissile fatty acid binding site. Chem. Phys. Lipids, 1998,
93, 67-80.
Cavalier, J.-F.; Buono, G.; Verger, R. Covalent inhibition of diges-
tive lipases by chiral phosphates. Acc. Chem. Res., 2000, 33, 579-
589.
Svendsen, A. Lipase protein engineering. Biochim. Biophys. Acta,
2000, 1543, 223-238.
Derewenda, Z. S. A twist in the tale of lipolytic enzymes. Nat.
Struct. Biol. 1995, 2, 347-349.
Parker, K. L.; Schimmer, B. P. In: Goodman and Gilman’s The
Pharmacological Basis of Therapeutics; 11th edition; Brunton, L.
L.; Lazo, J. S.; Parker, K. L. Eds.; McGraw-Hill: New York, 2005.
Lin, G.; Chen, G.-H.; Lin, Y.-F.; Su, L.-H.; Liao, P.-S. Highly
potent and selective 4,4’-biphenyl-4-acylate-4’-N-n-butylcarbamate
inhibitors as Pseudomonas species lipase. Eur. J. Lipid Sci. Tech.,
2005, 107, 65-73.
Lin, G.; Liao, W.-C.; Ku, Z.-H. Quantitative structure-activity
relationships for the pre-steady state of Pseudomonas species lipase
inhibitions by p-nitrophenyl-N- substituted carbamates. Protein J.,
2005, 24, 201-207.
Lin, M.-C.; Lu, C.-P.; Cheng, Y.-R.; Lin, Y.-F.; Lin, C.-S.; Lin, G.
Inhibition or activation of Pseudomonas species lipase by 1,2-
ethylene-di-N-alkylcarbamates in detergents. Chem. Phys. Lipids,
2007, 146, 85-93.
Lin, G.; Lai, F.-H.; Tsai, B.-I ; Hsieh, C.-W.; Tsai, H.-J. Probing
conformations of the glycerol backbones of triacyglycerols in the
active site of lipase by 1,2-cyclopentane- carbamates: the meso ef-
fect for the enzyme inhibition. J. Mol. Catal. B Enzym., 2006, 40,
86-92.
PSL suggests that the decahydro-2-naphthyl rings of both
trans,cis-inhibitors are binding to where are between those
of enantiomers of cis,cis-isomers (Fig. 6).
[13]
These inhibitors also show similar effects on porcine
pancreatic lipase and bovine bile salt activated lipase (or
cholesterol esterase) since all enzymes mentioned above are
belong to serine hydrolase and have similar structures.
[14]
[15]
[16]
For the cytoxicity test in vitro, all stereoisomers of deca-
hydro-2-naphthyl-N-n- butylcarbamate, Orlistat, and Ata-
zanvir (anti-virus drug) show little cytotoxicity on Madin-
Darby Canine Kidney (MDCK) cells (Fig. 7). Although anti-
Alzheimer’s disease drug Exelon is also a carbamate com-
pound, Exelon shows high cytotoxicity on MDCK cells in
vitro.
[17]
[18]
[19]
[20]
In summary, optically pure (2S,4aR,8aS)-(-)- and (2R,
4aS,8aR)-(+)-cis,cis- decahydro-2-naphthols are resolved
from the lipase-catalyzed acetylation reaction. For PSL inhi-
bition,
(2S,4aR,8aS)-cis,cis-decahydro-2-naphthyl-N-n-
butylcarbamate is 3.5 times less potent than (2R,4aS,8aR)-
cis,cis-decahydro-2-naphthyl-N-n- butylcarbamate due to the
unfavorable repulsion between the former inhibitor and the
enzyme.
REFERENCES
[21]
[22]
Chiou, S.-Y.; Yu, G.-Y.; Lin, G. QSAR for Inhibition of Pseudo-
monas Species Lipase by 1-Acyloxy-3-N-n-octylcarbamyl-
benzenes. QSAR Comb. Sci., 2009, 28, 267-273.
[1]
Svendsen, A. In: Lipases. Their structure biochemistry and applica-
tion; Woolley, P.; Petersen, S. B., Ed.; Cambridge University Press:
Cambridge; 1994; pp.1-21.
Chiou, S.-Y.; Huang, C.-F.; Yeh, S.-J.; Chen, I-R.; Lin, G. Synthe-
sis of enantiomers of exo-2-norbornyl-N-n-butylcarbamate and
endo-2-norbornyl-N-n-butylcarbamate for stereoselective inhibition
of acetylcholinesterase. Chirality, 2010, 22, 267-274.
Chiou, S.-Y.; Huang, C.-F.; Yeh, S.-J.; Chen, I-R.; Lin, G. Stereo-
selective inhibition of butyrylcholinesterase by enantiomers of exo-
and endo-norbornyl-N-n-butylcarbamates. J. Enzym. Inhib. Med.
Chem., 2010, 25, 13-20.
Hosie, L.; Sutton, L. D.; Quinn, D. M. p-Nitrophenyl and choles-
teryl-N-alkyl carbamates as inhibitors of cholesterol esterase. J.
Biol. Chem., 1987, 262, 260-264.
Feaster, S. R.; Lee, K.; Baker, N.; Hui, D. Y.; Quinn, D. M. Mo-
lecular recognition by cholesterol esterase of active site ligands:
structure-reactivity effects for inhibition by aryl carbamates and
subsequent carbamylenzyme turnover. Biochemistry, 1996, 35,
16723-16734.
Feaster, S. R.; Quinn, D. M. Mechanism-based inhibitors of mam-
malian cholesterol esterase. Methods Enzymol., 1997, 286, 231-
252.
Pietsch, M.; Gütschow, M. Alternate substrate inhibition of choles-
terol esterase by thieno[2,3-d][1,3]oxazin-4-ones. J. Biol. Chem.,
2002, 277, 24006-24013.
Pietsch, M.; Gütschow, M. Syntehsis of tricyclic 1,3-oxazin-4-ones
and kinetic analysis of cholesterol esterase and acetylcholinesterase
inhibition. J. Med. Chem., 2005, 48, 8270-8288.
Lin, G.; Lai, C.-Y. Hammett analysis of the inhibition of pancreatic
cholesterol esterase by substituted phenyl-N-butylcarbamate. Tet-
rahedron Lett., 1995, 36, 6117-6120.
[2]
[3]
[4]
Boland, W.; Frößl, C.; Lorenz, N. Esterolytic and lipolytic enzymes
in organic synthesis. Synthesis, 1991, 12, 1049-1072.
Theil, F. Lipase-supported synthesis of biologically active com-
pounds. Chem. Rev., 1995, 95, 2203-2227.
van Tilbeurgh, H.; Egloff, M.-P.; Martinez, C.; Rugani, N.; Verger,
R.; Cambillau, C. Interfacial activation of the lipase-procolipase
complex by mixed micelles revealed by X-ray crystallography. Na-
ture, 1993, 362, 814-820.
[23]
[24]
[25]
[5]
[6]
Lang, D. A.; Mannesse, M. L. M.; DeHaas, G. H.; Verheij, H. M.;
Dijkstra, B. W. Structural basis of the chiral selectivity of Pseudo-
monas cepacia lipase. Eur. J. Biochem., 1998, 254, 333-340.
Schrag, J. D.; Li, Y.; Cygler, M.; Lang, D.; Burgdorf, T.; Hecht,
H.-J.; Schmid, R.; Schomburg, D.; Rydel, T. J.; Oliver, J. D.;
Strickland, L. C.; Dunaway, C. M.; Larson, S. B.; Day, J.; McPher-
son, A. The open conformation of Pseudomonas lipase. Structure,
1997, 5,187-202.
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[7]
[8]
[9]
Kim, K. K.; Song, H. K.; Shin, D. H.; Hwang, K. Y.; Suh, S. W.
The crystal structure of a triacylglycerol lipase from Pseudomonas
cepacia reveals a highly open conformation in the absence of a
bound inhibitor. Structure, 1997, 5, 173-185.
Grochulski, P.; Bouthillier, F.; Kazlauskas, R. J.; Serreqi, A. N.;
Schrag, J. D.; Ziomek, E.; Cygler, M. Analogs of reaction interme-
diates identify a unique substrate binding site in Candida rugosa li-
pase. Biochemistry, 1994, 33, 3494-3500.
Luic, M.; Tomic, S.; Lescic, I.; Liubovic, E.; Sepac, D.; Sunjic, V.;
Vitale, L.; Saenger, W.; Kojic-Prodic, B. Complex of Burkholderia
cepacia lipase with transition state analogue of 1-phenoxy-2-
acetoxybutane. Biocatalytic, structural and modeling study. Eur. J.
Biochem., 2001, 268, 3964-3973.
Lin, G.; Lai, C.-Y. Linear free energy relationships of the inhibition
of pancreatic cholesterol esterase by 4-nitrophenyl-N-alkylcarba-
mate Tetrahedron Lett., 1996, 37, 193-196.
Oritani, T.; Yamashita, K.; Kabuto, C. Enantioselectivity of micro-
bial hydrolysis of (±)-decahydro-2-naphthyl acetates. J. Org.
Chem. 1984, 49, 3689-3694.
Dale, J. A.; Mosher, H. S. Nuclear magnetic resonance enanti-
omer reagents. Configurational correlations via nuclear magnetic
resonance chemical shifts of diastereomeric mandelate, O-
methylmandelate, and ꢀ-methoxy-ꢀ- trifluoromethylphenylace-
tate (MTPA) esters. J. Am. Chem. Soc., 1973, 95, 512-519.
[10]
[11]
Brozozowski, A. M.; Derewenda, U.; Derewenda, Z. S.; Dodson,
G. G.; Lawson, D. M.; Turkenburg, J. P.; Bjorkling, F.; Huge-
Jensen, B.; Patkar, S. A.; Thim, L. A model for interfacial activa-
tion in lipase from structure of a fungal lipase-inhibitor complex.
Nature, 1991, 351, 491-494.
Brady, L.; Brzozowski, A. M.; Derewenda, Z. S.; Dodson, E.;
Dodson, G. ; Tolley, S.; Turkenburg, J. P.; Christiansen, L.; Huge-
Jensen, B.; Norskov, L.; Thim, L.; Menge, U. A serine protease
triad forms the catalytic center of a triacylglycerol lipase. Nature,
1990, 343, 767-770.