7066
Y.-P. He et al. / Tetrahedron Letters 52 (2011) 7064–7066
Acknowledgments
We are grateful for financial support from the NSFC (20732006)
and MOST (973 project 2009CB82530), the Ministry of Education
and the USTC (WK2060190017).
N
N
Ph
COOEt
3b
Supplementary data
Supplementary data (experimental details and characterization
data of new compounds) associated with this article can be found,
Figure 2. X-ray structure of compound 3b.
References and notes
1. For recent reviews of C–H activation, see: (a) Kakiuchi, F.; Chatani, N. Adv.
Synth. Catal. 2003, 345, 1077; (b) Davies, H. M. L. Angew. Chem. 2006, 118, 6574.
Angew. Chem., Int. Ed. 2006, 45, 6422; (c) Godula, K.; Sames, D. Science 2006,
312, 67; (d) Bergman, R. G. Nature 2007, 446, 391; (e) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174; (f) Davies, H. M. L.; Manning, J. R. Nature
2008, 451, 417; (g) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094; (h) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.;
Baudoin, O. Chem. Eur. J. 2010, 16, 2654.
2. For selected recent references, see: (a) Pastine, S. J.; McQuaid, K. M.; Sames, D. J.
Am. Chem. Soc. 2005, 127, 12180; (b) Pastine, S. J.; Sames, D. Org. Lett. 2005, 7,
5429; (c) Tobisu, M.; Chatani, N. Angew. Chem. 2006, 118, 1713. Angew. Chem.,
Int. Ed. 2006, 45, 1683; (d) Bajracharya, G. B.; Pahadi, N. K.; Gridnev, I. D.;
Yamamoto, Y. J. Org. Chem. 2006, 71, 6204; (e) Barluenga, J.; Fananás-Mastral,
M.; Aznar, F.; Valdés, C. Angew. Chem. 2008, 120, 6696. Angew. Chem., Int. Ed.
2008, 47, 6594; (f) McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402;
(g) Shikanai, D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131,
3166; (h) Tobisu, M.; Nakai, H.; Chatani, N. J. Org. Chem. 2009, 74, 5471; (i)
Yang, S.; Li, Z.; Jian, X.; He, C. Angew. Chem. 2009, 121, 4059. Angew. Chem., Int.
Ed. 2009, 48, 3999; (j) Mahoney, S. J.; Moon, D. T.; Hollinger, J.; Fillion, E.
Tetrahedron Lett. 2009, 50, 4706; (k) Vadola, P. A.; Sames, D. J. Am. Chem. Soc.
2009, 131, 16525; (l) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett.
2010, 12, 1732; (m) Jurberg, I. D.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc.
2010, 132, 3543; (n) Zhou, G.; Zhang, J. Chem. Commun. 2010, 46, 6593; (o)
Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424.
3. For reviews, see: (a) Meth-Cohn, O.; Suschitzky, H. Adv. Heterocycl. Chem. 1972,
14, 211; (b) Verboom, W.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1990, 109,
311; (c) Meth-Cohn, O. Adv. Heterocycl. Chem. 1996, 65, 1; (d) Quintela, J. M.
Recent Res. Dev. Org. Chem. 2003, 7, 259; (e) Matyus, P.; Elias, O.; Tapolcsanyi, P.;
Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2625.
4. (a) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 13226;
(b) Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847; (c) Cao,
W.; Liu, X.; Wang, W.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 600; (d) Zhou, G.; Liu,
F.; Zhang, J. Chem. Eur. J. 2011, 17, 3101.
5. Mori, K.; Ehara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.
6. (a) Zhang, C.; De anta, C.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 416; (b)
Mori, K.; Ohshima, Y.; Akiyama, T. Chem. Lett. 2009, 38, 524; (c) Zhang, C.;
Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419.
7. (a) Chen, X.-H.; Zhang, W.-Q.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 5652; (b)
Yu, J.; He, L.; Chen, X.-H.; Song, J.; Chen, W.-J.; Gong, L.-Z. Org. Lett. 2009, 11,
4946; (c) Yu, J.; Chen, W.-J.; Gong, L.-Z. Org. Lett. 2010, 12, 4050.
concentration led to a diminished diastereoselectivity (Table 1, en-
tries 13 and 14). The best result in terms of yield and stereoselec-
tivity was obtained when the reaction was catalyzed by 10 mol %
of 5a (Table 1, entry 15, 90% yield, 86% ee).
The generality of the protocol for different substrates was next
explored (Table 2). A number of anilines were first examined and it
was found that either electronically donating or less withdrawing
substituents on the benzene ring could be tolerated. In these cases,
both diastereo- and enantioselectivities did not show great sensi-
tivity to the substituents. Thus, a good yield and moderate enanti-
oselectivity were obtained when aniline was used (74% ee, Table 2,
entry 1) while either electronically rich anilines (methyl or meth-
oxy) or electron-withdrawing anilines (bromo or chloro) were able
to deliver 3 in good yield ranging from 57% to 76% and with high
diastereomeric ratios ranging from 8/1 to 11/1 and fairly good
enantioselectivities of up to 80% ee (Table 2, entries 2–5). In con-
trast, anilines bearing a strongly electron-withdrawing group pro-
vided a much lower yield and enantioselectivity.8 A variety of ethyl
2-oxo-2-(2-(pyrrolidinyl)-phenyl)acetates 1 were finally exam-
ined. The introduction of electron-donating substituents at 4- or
5-position (Table 2, entries 6, 8, and 9) was well tolerable to give
the desired compounds in high enantioselectivities, but the reac-
tion conversion appeared to be highly dependent on the electronic
feature. For example, a considerably lower yield was obtained in
the reaction of 2-pyrrolidinyl phenyl keto esters bearing an elec-
tron-donating para-substituent (Table 2, entries 8 and 9), probably
because the electron-donating group makes the corresponding
imine functionality in situ formed less reactive toward the 1,5-hy-
dride shift. Again, ethyl 2-(5-chloro-2-(pyrrolidin-1-yl) phenyl)-2-
oxoacetate participated in the reaction in a good enantiomeric ex-
cess, but a moderate yield was offered (Table 2, entry 7). In this
case, the meta-chloro substituent could be considered as an elec-
tron-donating group to make the keto ester electronically richer
and hence a slower reaction was observed.
The absolute configuration of 3b was determined by X-ray crys-
tallographic analysis. After two recrystallizations, the crystalline
3b was obtained in >99% ee. The X-ray structure revealed the abso-
lute configuration of 3b was assigned to be (3R, 5S) (Fig. 2).
In summary, we have disclosed an organocatalytic asymmetric
tandem 1,5-hydride transfer/ring closing reaction of 2-pyrrolidinyl
phenyl keto esters with anilines to give cyclic aminals in fairly
good diastereo- and enantioselectivities. In this reaction, the intra-
molecular transfer hydrogenation (redox reaction) is the stereo-
genic step. This case represents the first example of
organocatalytic asymmetric transfer hydrogenation of imines by
exploiting inactive sp3 C–H hydride donors in view of the fact that
Hantzsch esters and other highly active hydride donors were
exclusively used in the related reactions.9,10 A further investigation
on improving the stereoselectivity and on other related reactions is
underway.
8. The reaction of 4-aminobenzonitrile, 4-nitroaniline, and 2-nitroaniline with
methyl 4-aminobenzoate proceeded in
enantioselectivity.
a
much lower yield and
9. (a) Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127,
32; (b) Tuttle, J. B.; Ouellet, S. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006,
128, 12662; (c) Yang, J. W.; Fonseca, M. T. H.; List, B. Angew. Chem. 2004, 116,
6829; Angew. Chem., Int. Ed. 2004, 43, 6660.; (d) Yang, J. W.; Fonseca, M. T. H.;
Vignola, N.; List, B. Angew. Chem. 2004, 117, 110; Angew. Chem., Int. Ed. 2005, 44,
108.; (e) Yang, J. W.; Fonseca, M. T. H.; List, B. J. Am. Chem. Soc. 2005, 127,
15036; (f) Mayer, S.; List, B. Angew. Chem. 2006, 118, 4299; Angew. Chem., Int.
Ed. 2006, 45, 4193.; (g) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128,
13368; (h) Yang, J. W.; List, B. Org. Lett. 2006, 8, 5653; (i) Zhao, G.-L.; Córdova, A.
Tetrahedron Lett. 2006, 47, 7417; (j) Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129,
7498; (k) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth. Catal.
2008, 350, 1001; (l) Rueping, M.; Antonchick, A. P. Angew. Chem. 2008, 120,
5920; Angew. Chem., Int. Ed. 2008, 47, 5836.; (m) Martin, N. J. A.; Cheng, X.; List,
B. J. Am. Chem. Soc. 2008, 130, 13862; (n) Han, Z.-Y.; Chen, X.-H.; Gong, L.-Z. J.
Am. Chem. Soc. 2009, 131, 9182–9183; (o) Rueping, M.; Hubener, L. Synthesis
2011, 1243.
10. (a) Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180; (b) Zhu, C.; Akiyama, T. Adv.
Synth. Catal. 2010, 352, 1846; (c) Enders, D.; Liebich, J. X.; Raabe, G. Chem. Eur. J.
2010, 16, 9763; (d) Zhu, C.; Akiyama, T. Synlett 2011, 1251.