Journal of the American Chemical Society
COMMUNICATION
PBPs.3b,18 This tripeptide cannot serve as a TP donor since
polymeric PG substrates are required. Furthermore, it cannot serve
as a TP acceptor because the lysine side-chain amine does not
contain an R-D-amino acid.19 In closing, we note that the ability to
reconstitute TP activity using defined substrates and purified
proteins will enable detailed studies into the cross-linking step of
the transpeptidation reaction. Understanding the chemistry of these
enzymes will provide insight into the various roles that TPs play in
building up a new cell wall, editing the existing cell wall, and perhaps
transmitting cellular signals through these chemical modifications.
(7) (a) Ye, X.-Y.; Lo, M.-C.; Brunner, L.; Walker, D.; Kahne, D.;
Walker, S. J. Am. Chem. Soc. 2001, 123, 3155–3156. (b) Chen, L.;
Walker, D.; Sun, B.; Hu, Y.; Walker, S.; Kahne, D. Proc. Natl. Acad. Sci. U.
S.A. 2003, 100, 5658–5663. (c) Barrett, D. S.; Chen, L.; Litterman, N. K.;
Walker, S. Biochemistry 2004, 43, 12375–12381. (d) Barrett, D.;
Leimkuhler, C.; Chen, L.; Walker, D.; Kahne, D.; Walker, S. J. Bacteriol.
2005, 187, 2215–2217. (e) Barrett, D.; Wang, T. S.; Yuan, Y.; Zhang, Y.;
Kahne, D.; Walker, S. J. Biol. Chem. 2007, 282, 31964–31971. (f) Yuan,
Y.; Barrett, D.; Zhang, Y.; Kahne, D.; Sliz, P.; Walker, S. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 5348–5353. (g) Perlstein, D. L.; Zhang, Y.; Wang,
T. S.; Kahne, D. E.; Walker, S. J. Am. Chem. Soc. 2007, 129, 12674–12675.
(h) Wang, T. S.; Manning, S. A.; Walker, S.; Kahne, D. J. Am. Chem. Soc.
2008, 130, 14068–14069.
’ ASSOCIATED CONTENT
(8) (a) Men, H.; Park, P.; Ge, M.; Walker, S. J. Am. Chem. Soc. 1998,
120, 2484–2485. (b) Ha, S.; Chang, E.; Lo, M.-C.; Men, H.; Park, P.; Ge,
M.; Walker, S. J. Am. Chem. Soc. 1999, 121, 8415–8426. (c) Chen, L.;
Men, H.; Ha, S.; Ye, X.-Y.; Brunner, L.; Hu, Y.; Walker, S. Biochemistry
2002, 41, 6824–6833.
S
Supporting Information. Experimental procedures, syn-
b
thesis of substrates and compound analysis, protein construct
descriptions, protein cloning and purification protocols, Q-TOF
LC-MS and SDS-PAGE analysis of peptides. This material is
(9) E. coli PBP1A PGT consists of residues M1-I291.
(10) Use of D-amino acid acceptors by PBPs is supported by work
with modified peptide substrates; see: (a) Pollock, J. J.; Ghuysen, J. M.;
Linder, R.; Salton, M. R.; Perkins, H. R.; Nieto, M.; Leyh-Bouille, M.;
Frere, J. M.; Johnson, K. Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 662–666.
(b) Adam, M.; Damblon, C.; Jamin, M.; Zorzi, W.; Dusart, V.; Galleni, M.; el
Kharroubi, A.; Piras, G.; Spratt, B. G.; Keck, W.; Coyette, J.; Ghuysen, J. M.;
Nguyen-Disteche, M.; Frere, J. M. Biochem. J. 1991, 279, 601–604. (c)
Kumar, I.; Pratt, R. F. Biochemistry 2005, 44, 9971–9979.
’ AUTHOR INFORMATION
Corresponding Author
suzanne_walker@hms.harvard.edu; kahne@chemistry.harvard.edu
(11) Anderson, J. S.; Matsuhashi, M.; Haskin, M. A.; Strominger, J. L.
Proc. Natl. Acad. Sci. U.S.A. 1965, 53, 881–889.
’ ACKNOWLEDGMENT
This research was supported by the National Institutes of Health
(R01 GM076710; R01 GM066174). All LC-MS data were
acquired on an Agilent 6520 Q-TOF spectrometer supported by
theTaplinFunds forDiscoveryProgram(P.I.:S.W.). Wethankthe
Bernhardt Lab (Harvard Medical School) for PBP.
(12) (a) Nicholas, R. A.; Strominger, J. L. J. Biol. Chem. 1988,
263, 2034–2040. (b) van der Linden, M. P.; de Haan, L.; Dideberg,
O.; Keck, W. Biochem. J. 1994, 303, 357–362. (c) Hesek, D.; Suvorov,
M.; Morio, K.; Lee, M.; Brown, S.; Vakulenko, S. B.; Mobashery, S. J. Org.
Chem. 2004, 69, 778–784. (d) Zhang, W.; Shi, Q.; Meroueh, S. O.;
Vakulenko, S. B.; Mobashery, S. Biochemistry 2007,46, 10113–10121. Soluble
E. coli PBP5 was used; see: (e) Lee, M.; Hesek, D.; Suvorov, M.; Lee, W.;
Vakulenko, S.; Mobashery, S. J. Am. Chem. Soc. 2003, 125, 16322–16326.
(13) (a) Lark, C.; Bradley, D.; Lark, K. G. Biochim. Biophys. Acta 1963,
78, 278–288. (b) Tsuruoka, T.; Tamura, A.; Miyata, A.; Takei, T.; Iwamatsu,
K.; Inouye, S.; Matsuhashi, M. J. Bacteriol. 1984, 160, 889–894. (c) Tsuruoka,
T.; Tamura, A.; Miyata, A.; Takei, T.; Inouye, S.; Matsuhashi, M. Eur. J.
Biochem. 1985, 151, 209–216. (d) Caparros, M.; Torrecuadrada, J. L.; de
Pedro, M. A. Res. Microbiol. 1991, 142, 345–350. (e) Caparros, M.; Pisabarro,
A. G.; de Pedro, M. A. J. Bacteriol. 1992, 174, 5549–5559. (f) Lam, H.; Oh,
D. C.; Cava, F.; Takacs, C. N.; Clardy, J.; de Pedro, M. A.; Waldor, M. K.
Science 2009, 325, 1552–1555. (g) Kolodkin-Gal, I.; Romero, D.; Cao, S.;
Clardy, J.; Kolter, R.; Losick, R. Science 2010, 328, 627–629. (h) Cava, F.;
Lam, H.;dePedro, M. A.;Waldor, M. K.Cell. Mol. Life Sci. 2011, 68, 817–831.
(14) Uehara, T.; Parzych, K. R.; Dinh, T.; Bernhardt, T. G. EMBO
J. 2010, 29, 1412–1422.
’ REFERENCES
(1) (a) Scheffers, D. J.; Pinho, M. G. Microbiol. Mol. Biol. Rev. 2005,
69, 585–607. (b) Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J. A.; Charlier,
P. FEMS Microbiol. Rev. 2008, 32, 234–258. (c) Vollmer, W.; Seligman,
S. J. Trends Microbiol. 2010, 18, 59–66.
(2) (a) Tipper, D. J.; Strominger, J. L. Proc. Natl. Acad. Sci. U.S.A.
1965, 54, 1133–1141. (b) Ghuysen, J. M.; Frere, J. M.; Leyh-Bouille, M.;
Coyette, J.; Dusart, J.; Nguyen-Disteche, M. Annu. Rev. Biochem. 1979,
48, 73–101. (c) Waxman, D. J.; Strominger, J. L. Annu. Rev. Biochem.
1983, 52, 825–869. (d) Spratt, B. G. J. Gen. Microbiol. 1983,
129, 1247–1260. (e) Wilke, M. S.; Lovering, A. L.; Strynadka, N. C.
Curr. Opin. Microbiol. 2005, 8, 525–533.(f) Testero, S. A.; Fisher, J. F.;
Mobashery, S. β-Lactam Antibiotics. In Burger’s Medicinal Chemistry,
Drug Discovery and Development; Abraham, D. J., Rotella, D. P., Eds.;
Wiley & Sons: New York, 2010; Vol. 7; pp 259À404.
(15) Shi, Q.; Meroueh, S. O.; Fisher, J. F.; Mobashery, S. J. Am.
Chem. Soc. 2011, 133, 5274–5283.
(3) Natural substrates refer to PG rather than β-lactams (see ref 2)
or modified peptides (see ref 10); See: (a) Waxman, D. J.; Yu, W.;
Strominger, J. L. J. Biol. Chem. 1980, 255, 11577–11587. (b) Schwartz, B.;
Markwalder, J. A.; Wang, Y. J. Am. Chem. Soc. 2001, 123, 11638–11643. (c)
Bertsche, U.; Breukink, E.; Kast, T.; Vollmer, W. J. Biol. Chem. 2005,
280, 38096–38101. (d) Born, P.; Breukink, E.; Vollmer, W. J. Biol. Chem.
2006, 281, 26985–26993.
(16) The range of incorporated amino acids in this study is broader
than past reports. While the position can vary, previous work using
E. coli cell membranes suggests that added D-amino acids can replace the
terminal peptide residue; see: Izaki, K.; Matsuhashi, M.; Strominger, J. L.
Proc. Natl. Acad. Sci. U.S.A. 1966, 55, 656–663.
(17) Preliminary experiments indicate that hydrolysis is significantly
(4) TPs in bifunctional PBPs have not previously been shown to
catalyze PG hydrolysis using natural substrates. For a review, see: Goffin,
C.; Ghuysen, J. M. Microbiol. Mol. Biol. Rev. 2002, 66, 702–738.
(5) For many Gram-positive bacteria, the ɛ-amino group of L-Lys is
acylated with other amino acids or peptides, which are involved in cross-
links. See the following for a review on PG structure: Vollmer, W.;
Blanot, D.; de Pedro, M. A. FEMS Microbiol. Rev. 2008, 32, 149–167.
(6) E. coli AmiA was used as the amidase in this work; see: Lupoli,
T. J.; Taniguchi, T.; Wang, T. S.; Perlstein, D. L.; Walker, S.; Kahne, D. E.
J. Am. Chem. Soc. 2009, 131, 18230–18231.
slower than transpeptidation.
(18) Jamin, M.; Damblon, C.; Millier, S.; Hakenbeck, R.; Frere, J. M.
Biochem. J. 1993, 292, 735–741.
(19) These findings suggested that it is not necessary to use N-acyl-
L-Lys-protected donors to prevent cross-linking, as was done here. In
fact, we have confirmed that L-Lys-containing PG polymers do not
undergo cross-linking with E. coli PBP1A..
10751
dx.doi.org/10.1021/ja2040656 |J. Am. Chem. Soc. 2011, 133, 10748–10751