62
T. Ponpandian, S. Muthusubramanian / Tetrahedron Letters 53 (2012) 59–63
Table 4
References and notes
Optimization of reaction condition for the formation of 7a
1. (a) Vicentini, C. B.; Brandolini, V.; Guarneri, M.; Giori, P. Farmaco 1992, 47,
1021–1034; (b) Joan, C. F. T.; Elizabeth, H.; Beatrice, M.; Daniel, P. B. Antimicrob.
Agents Chemother. 1998, 42, 313–318.
2. Buckle, D. R.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. J. Med. Chem. 1986, 29,
2262–2267.
NC
O
N
N
O
S
O
NH
NaN3 (1.5 equ)
CN
H
3. Palhagen, S.; Canger, R.; Henriksen, O.; van Parys, J. A.; Riviere, M. E.; Karolchyk,
M. A. Epilepsy Res. 2001, 43, 115–124.
1a
4. (a) Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C. F.;
Karlsson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem 1994, 37, 4185–4194; (b)
Velaquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J.;
Camarasa, M. J. Antivir. Chem. Chemother. 1998, 9, 481–489.
6
7a
Entry
Solvent
T (°C)
Time (h)
Yield of 7a (%)a
5. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.;
Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris,
J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert,
D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953–970.
6. Brockunier, L. L.; Parmee, E. R.; Ok, H. O.; Candelore, M. R.; Cascieri, M. A.;
Colwell, L. F.; Deng, L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.;
Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 2000,
10, 2111–2114.
1
2
3
DMF
DMF
DMF
Water
30
70
90
reflux
15
3
1
75
90
93
95
1
a
Yield of isolated product.
7. Maehr, H.; Wayne, N. J. US Patent US 5523310, 1996.
8. Cai, D.; Journet, M.; Larsen, R. D. US Patent US 6051707, 2000.
9. Weide, T.; Saldanha, S. A.; Minond, D.; Spicer, T. P.; Fotsing, J. R.; Spaargarent,
M.; Frere, J. M.; Bebrone, C.; Sharpless, K. B.; Hodder, P. S.; Fokin, V. V. Med.
Chem. Lett. 2010, 1, 150–154.
10. Cheng, Z. Y.; Li, W. J.; He, F.; Zhou, J. M.; Zhu, X. F. Bioorg. Med. Chem. 2007, 15,
1533–1538.
Table 5
Synthesis of 5-aryl-4-cyano-(NH)-1,2,3-triazole derivatives 7 (7b–7q)
11. Gunther, D.; Nestler, H. J.; Rosch, G.; Schinzel, E. US Patent US 4001221, 1977.
12. For example: (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596; (b) Tornoe, C. W.; Christensen, C.; Meldal,
M. J. Org. Chem. 2002, 67, 3057–3064; (c) Feldman, A. K.; Colasson, B.; Fokin, V.
V. Org. Lett. 2004, 6, 3897–3899; (d) Rodionov, V. O.; Presolski, S. I.; Diaz, D. D.;
Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12705–12712; (d) Chan, T.
R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2588–2853; (e)
Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6,
4223–4225; (f) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.;
Wang, Q. Org. Lett. 2004, 6, 4603–4606; (g) Kamijo, S.; Jin, T.; Hou, Z.;
Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786–7787; (h) Himo, F.; Lovell, T.;
Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am.
Chem. Soc. 2005, 127, 210–216; (i) Hein, J. E.; Tripp, J.; Kranova, L.; Sharpless, K.
B.; Fokin, V. V. Angew. Chem. 2009, 48, 8018–8021.
13. (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.;
Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998–15999; (b) Boren, B. C.;
Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z. Y.; Jia, G. C.; Fokin, V. V.
J. Am. Chem. Soc. 2008, 130, 8923–8930; (c) Rasmussen, L. K.; Boren, B. C.; Fokin,
V. V. Org. Lett. 2007, 9, 5337–5339.
14. (a) Beck, G.; Günter, D. Chem. Ber. 1973, 106, 2758–2766; (b) Quiclet-Sire, B.;
Zard, S. Z. Synthesis 2005, 19, 3319–3326; (c) Amantini, D.; Fringuelli, F.;
Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. J. Org. Chem. 2005, 70, 6526–
6529; (d) Sengupta, S.; Duan, H.; Lu, W.; Petersen, J. L.; Shi, X. Org. Lett. 2008,
10, 1493–1496; (e) Li, N.; Wang, D.; Li, J.; Shi, W.; Li, C.; Chen, B. Tetrahedron
Lett. 2011, 52, 980–982; (f) Adamo, I.; Benedetti, F.; Berti, F.; Nardin, G.;
Norbedo, S. Tetrahedron Lett. 2003, 44, 9095–9097; (g) Li, J.; Wang, D.; Zhang,
Y.; Baohua, J. L.; Chen, B. Org. Lett. 2009, 11, 3024.
O
O
O
NC
Ar
N
N
S
CN
Water
Reflux
NH
NaN3
Ar
H
1
7b-7q
6
Product
1
Time (h)
Yield (%)
7b
7c
7d
7e
7f
7g
7h
7i
7j
7k
7l
7m
7n
7o
7p
7q
Ar = Phenyl
1
1
4
3
1
1
1
1
1
2
4
3
0.5
1
0.5
1
91
99
65
99
96
95
90
88
93
75
60
70
93
84
88
76
Ar = 4-Chlorophenyl
Ar = 4-Methylthiophenyl
Ar = 3-Phenoxyphenyl
Ar = 3-Carboxyphenyl
Ar = 2-Fluorophenyl
Ar = 4-Methoxyphenyl
Ar = 3-Methoxy-4-flourophenyl
Ar = 3,4,5-Trimethoxyphenyl
Ar = 5-Acetoxymethyl-2-furyl
Ar = 2-Thienyl
Ar = 3-Thienyl
Ar = 2-Thiazolyl
Ar = 3-Pyridyl
Ar = 4-Pyridyl
Ar = 4-Quinolinyl
15. Carini, D. J.; Duncia, J. J. V.; Wong, P. C. B. US Patent US 5155118, 1992.
16. (a) Zefirov, N. S.; Chapovskaya, N. K.; Kolesnikov, V. V. J. Chem. Soc. D 1971,
1001–1002; (b) Shin, C. G.; Yonezawa, Y.; Yoshimura, J. Tetrahedron Lett. 1974,
15, 7–10.
17. (a) Gao, Y.; Lam, Y. Org. Lett. 2006, 8, 3283–3285; (b) Gao, Y.; Lam, Y. J. Comb.
Chem. 2008, 10, 327–332; (c) Habib, P. M.; Raju, B. R.; Kavala, V.; Kuo, C. W.;
Yao, C. Tetrahedron 2009, 65, 5799–5804.
hyde and active methylene compound where sodium azide not
only acts as the reactant but also serves as the catalyst for Knoeve-
nagel condensation. The generation of electron deficient alkene in a
separate step is avoided in this protocol. It has also demonstrated
that water can act as a good medium for this class of reactions.
Simple reaction conditions, easy isolation process and good yields
of the triazoles are the salient features of the methodology.
18. (a) Bernstein, P. R.; Vacek, E. E. P. Synthesis 1987, 1133–1134; (b) Koguro, K.;
Oga, S.; Mitsui, S.; Orita, R. Synthesis 1998, 910–914; (c) Roh, J.; Artamonova, T.
V.; Vavrova, K.; Koldobskii, G. I.; Hrabalek, A. Synthesis 2009, 2175–2178.
19. A mixture of p-tolualdehyde (1 equiv), methyl cyanoacetate (1.1 equiv) and
Et3N.HCl (0.2 equiv) in DMF were stirred at 70 °C for 12 h, yielded only 10% of 3a.
20. For example: (a) Ebitani, K.; Motokura, K.; Mori, K.; Mizugaki, T.; Kaneda, K. J.
Org. Chem. 2006, 71, 5440–5447; (b) Ranu, B. C.; Jana, R. Eur. J. Org. Chem. 2006,
3767–3770; (c) Yadav, J. S.; Reddy, B. S. S.; Basak, A. K.; Visali, B.; Narsaiah, A.
V.; Nagaiah, K. Eur. J. Org. Chem. 2004, 546–551; (d) Reddy, B. M.; Patil, M. K.;
Rao, K. N.; Reddy, G. K. J. Mol. Catal. A: Chem 2006, 258, 302–307; (e) Deb, M. L.;
Bhuyan, P. J. Tetrahedron Lett. 2005, 46, 6453–6456; (f) Sabitha, G.; Reddy, B. V.
S.; Babu, R. S.; Yadav, J. S. Chem. Lett. 1998, 773–774; (g) Kumbhare, R. M.;
Sridhar, M. Catal. commun. 2008, 9, 403–405.
21. General procedure for the synthesis of Knoevenagel product 3a, 3c, 3f and 3h: A
mixture of p-tolualdehyde (1a) (5 mmol), active methylene compound (2)
(5 mmol) and sodium azide (20 mol %) was mixed with DMF (10 mL) in a
round-bottomed flask. The reaction mixture was heated in an oil bath at given
temperature for the desired time (Table 2). After cooling to room temperature,
the reaction mixture was poured into cold water (100 mL), the solid obtained
was collected by filtration and washed with water to afford pure 3 as a white
solid. See Supplementary data for spectral data of all compounds.
22. General procedure as exemplified for Methyl 5-p-tolyl-2H-1,2,3-triazole-4-
carboxylate (4a): To a mixture of p-tolualdehyde (0.5 g, 4.2 mmol), methyl
Acknowledgments
The authors thank the DST, New Delhi for assistance under the
IRHPA program for the NMR facility, Orchid Research Laboratory
Ltd for providing the chemicals, laboratory facility and Mr. R. Vig-
nesh for his support.
Supplementary data
Supplementary data associated with this article can be found, in