N. Raja et al. / Polyhedron 31 (2012) 196–201
201
[5] S. Kannan, M. Sivagamasundari, R. Ramesh, Yu Liu, J. Organomet. Chem. 693
(2008) 2251.
These redox processes are quasi-reversible with a large peak-to-
peak separation ( Ep) of 90–130 mV [45] and a comparison of
D
[6] S. Kannan, R. Ramesh, Yu Liu, J. Organomet. Chem. 692 (2007) 3380.
[7] W. Baratta, P. Rigo, Eur. J. Inorg. Chem. 2008 (2008) 4041.
[8] S. Kannan, R. Ramesh, Polyhedron 27 (2008) 701.
[9] S. Enthaler, R. Jackstell, B. Hagemann, K. Junge, G. Erre, M. Beller, J. Organomet.
Chem. 691 (2006) 4652.
[10] J.A. Cabeza, I. da Silva, I. del Rio, R.A. Gossage, L.M. Mendez, D. Miguel, J.
Organomet. Chem. 692 (2007) 4346.
[11] G.K. Lahiri, S. Bhattacharya, B.K. Ghosh, A. Chakravorty, Inorg. Chem. 26 (1987)
4324.
the current height (ipa) with that of the standard ferrocene/ferroce-
nium couple under identical experimental conditions reveals a one
electron redox process [46,47]. These redox potentials (E1/2) are
independent of the various scan rates, supporting quasi-
reversibility.
½RuIIIX2ðEPh3Þ2ðLÞꢃ ꢀ ½RuIVX2ðEPh3Þ2ðLÞꢃ þ eꢀ
½RuIIIX2ðEPh3Þ2ðLÞꢃ þ eꢀ ꢀ ½RuIIX2ðEPh3Þ2ðLÞꢃ
ð1Þ
ð2Þ
[12] S. Bhattacharya, S.R. Boone, G.A. Fox, C.G. Pierpont, J. Am. Chem. Soc. 112
(1990) 1088.
[13] H. Aneetha, C.R.K. Rao, K.M. Rao, P.S. Zacharias, X. Feng, T.C.W. Mak, B. Srinivas,
M.Y. Chiang, J. Chem. Soc., Dalton Trans. (1997) 1697.
[14] M.G. Bhowon, H.L.K. Wah, R. Narain, Polyhedron 18 (1998) 341.
[15] (a) W. Tsai, Y.H. Liu, S.M. Peng, S.T. Liu, J. Organomet. Chem. 690 (2005) 415;
(b) C.A. Mc Auliffe, W. Levason, Phosphine, Arsine and Stilbene Complexes of
the Transition Elements, Elsevier, Amsterdam, 1979.
[16] R.S. Sdrawn, M. Zamakani, J.C. Coho, J. Am. Chem. Soc. 108 (1986) 3510.
[17] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, S.T. Patel, P. Iyer, J. Mol. Catal. 150 (1999)
175.
The couples at more positive and less negative potentials are
believed to correspond to metal centered oxidation and reduction.
It has been observed that there is not much variation in the redox
potentials due to replacement of chlorides by bromides and tri-
phenylphosphine by arsine. Hence, from the electrochemical data
it is clear that the present ligand system is ideally suitable for sta-
bilizing the higher oxidation state of ruthenium ion.
[18] G. Venkatachalam, R. Ramesh, Inorg. Chem. Commun. 8 (2005) 1009.
[19] S. Kannan, R. Ramesh, Polyhedron 25 (2006) 3095.
[20] R. Antony, G.L. Tembe, M. Ravindranathan, R.N. Ram, Polymer 39 (1998) 4327.
[21] P.M.T. Piggot, L.A. Hall, A.J.P. White, D.J. Williams, Inorg. Chim. Acta 357 (2004)
207.
4. Conclusions
ˇ
ˇ
ˇ
ˇ
´
[22] Z. Trávnícek, M.M. Malarová, R. Novotná, J. Vanco, K. Štepánková, P. Suchy, J.
Inorg. Biochem. 105 (2011) 937.
The synthesis and characterization of hexacoordinated ruthe-
nium(III) complexes containing chelating benzophenones, having
the general molecular formula [RuX2(EPh3)2(L)] (where X = Cl or
Br; E = P or As; L = monobasic bidentate benzophenone ligand),
have been described. The molecular structure of the complex con-
firms the coordination of ligand through the ketonic and phenolate
oxygen atoms to ruthenium and indicates the presence of a dis-
torted octahedral geometry around the ruthenium center. All the
complexes are paramagnetic and display rhombic EPR spectra.
The complexes are redox active and show one electron quasi
reversible redox couples.
[23] M.K. Dalal, M.J. Upadhyay, R.N. Ram, J. Mol. Catal. A Chem. 142 (1999) 325.
[24] P. Munshi, R. Samanta, G.K. Lahiri, J. Organomet. Chem. 586 (1999) 176.
[25] R. Raveendran, S. Pal, J. Organomet. Chem. 694 (2009) 1482.
[26] D. Chatterjee, S. Basak, A. Mitra, A. Sengupta, J. Le Bras, J. Muzart, Inorg. Chim.
Acta 359 (2006) 1325.
[27] N. Raja, R. Ramesh, J. Spectrochim., Part A 75 (2010) 713.
[28] S. Aiki, A. Taketoshi, J. Kuwabara, T. Koizumi, T. Kanbara, J. Organomet. Chem.
696 (2011) 1301.
[29] A.I. Vogel, Test Book of Practical Organic Chemistry, fifth ed., Longman,
London, 1989.
[30] W.E. Hatfield, in: E.A. Boudreaux, L.N. Mulay (Eds.), Theory and Applications of
Molecular Paramagnetism, Wiley, New York, 1976, p. 49.
[31] J. Chatt, G.J. Leigh, D.M.P. Mingos, R.J. Paske, J. Chem. Soc. A (1968) 2636.
[32] R.K. Poddar, I.P. Khullar, U. Agarwala, J. Inorg. Nucl. Chem. Lett. 10 (1974) 221.
[33] K. Natarajan, R.K. Poddar, U. Agarwala, J. Inorg. Nucl. Chem. 39 (1977) 431.
[34] T.A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 28 (1966) 954.
[35] (a) CELL, 2.92, 1999 ed., STOE & Cie, GmbH, Darmstadt, Germany, 1999;
(b) A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A.
Guagliardi, A.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32 (1999)
115.
Acknowledgements
One of the authors (N.R.) thanks the University Grants Commis-
sion (UGC), New Delhi for the award of the UGC-SAP RFSMS Schol-
arship. We thank DST-FIST for X-ray and NMR data and UGC-SAP
for EPR facilities.
[36] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Gottingen,
1997.
[37] K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, Wiley Interscience, New York, 1971.
[38] (a) P. Byabartta, P.K. Santra, T.K. Mishra, C. Sinha, C.H.L. Kennard, Polyhedron
20 (2001) 905;
Appendix A. Supplementary material
(b) S. Goswami, R. Mukherjee, A. Chakravorty, Inorg. Chem. 22 (1983) 2825.
[39] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier, New York,
1984.
[40] M.M.T. Khan, D. Srinivas, R.I. Khureshy, N.H. Khan, Inorg. Chem. 29 (1990)
2320.
[41] S. Pal, S. Pal, Eur. J. Inorg. Chem. (2003) 4244.
[42] G. Venkatachalam, R. Ramesh, S.M. Mobin, J. Organomet. Chem. 690 (2005)
3937.
CCDC 807530 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
References
[43] P. Bernhard, H.B. Burgi, J. Hauser, H. Lehmann, A. Ludi, Inorg. Chem. 25 (1982)
3936.
[44] (a) N.C. Pramanik, S. Bhattacharya, Polyhedron 16 (1997) 3047;
(b) L.R. Dinelli, A.A. Batista, K. Wohnrath, M.P. de Araujo, S.L. Queiroz, M.R.
Bonfadini, G. Oliva, O.R. Nascimento, P.W. Cyr, K.S. MacFarlane, B.R. James,
Inorg. Chem. 38 (1999) 5341.
[45] P. Byabartta, J. Dinda, P.K. Santra, C. Sinha, K. Pannerselvam, F.-L. Liao, T.H. Lu, J.
Chem. Soc., Dalton Trans. (2001) 2825.
[46] G.K. Lahiri, S. Bhattacharya, M. Mukherjee, A.K. Mukherjee, A. Chakravorty,
Inorg. Chem. 26 (1987) 3359.
[47] P.K. Sinha, J. Chakravarty, S. Bhattacharya, Polyhedron 16 (1997) 81.
[1] (a) G. Wilkinson, R.D. Gillard, J.A. McCleverty, Comprehensive Coordination
Chemistry, vol. 4, Pergamon, Oxford, 1987. pp. 277;
(b) C.E. Housecroft, Comprehensive Coordination Chemistry II, vol. 5, Elsevier
Pergamon, Amsterdam, 2004. pp. 555;
(c) C.-M. Che, T.-C. Lau, Comprehensive Coordination Chemistry II, vol. 5,
Elsevier Pergamon, Amsterdam, 2004. pp. 733.
[2] D.B. Grotjahn, Coord. Chem. Rev. 190–192 (1999) 1125.
[3] M.J. Clarke, Coord. Chem. Rev. 236 (2003) 209.
[4] E.A. Seddon, K.R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam,
1984.