Inorganic Chemistry
Article
4000−400 cm−1. UV−vis spectra were recorded with a Perkin-Elmer
Lambda-25 UV−visible spectrophotometer. NMR spectra were
recorded on a Varian FT-400 MHz instrument. Chemical shifts were
recorded in parts per million (ppm) on the scale using
tetramethylsilane (TMS) as a reference. ESI-MS spectra were recorded
in a WATERS LC-MS/MS system, Q-Tof Premier in the Central
Instrument Facility (CIF) of IIT Guwahati.
Synthesis of LH2. The receptor LH2 was synthesized by refluxing
the 1:2 mixture of 4-nitrophenylisothiocyanate and hydrazine hydrate
in the presence of acetic acid (catalytic amount) in EtOH for 24 h.
The precipitate was filtered and washed with 15 mL of ethanol five
times. An orange solid was obtained after drying the precipitate in a
vacuum (yield 62%).1H NMR (d6-DMSO) δ (ppm): 10.852(s, H−N),
8.216 (J = 8 Hz d, 4H), and 7.760 (J = 8 Hz, d, 4H). 13C NMR (d6-
DMSO) δ (ppm): 116.63, 125.604, 140.544, 146.668, and 156.064.
ESI mass spectrometry: calcd for 359.06. [M + H+]; found 359.06 [M
+ H+].
X-ray Crystallography. Intensity data were collected using a
Bruker SMART APEX-II CCD diffractometer, equipped with a fine
focus 1.75 kW sealed tube Mo Kα radiation (λ) 0.71073 (Å) at 298 K,
with increasing ω (width of 0.3° per frame) at a scan speed of 5 s/
frame. The SMART software was used for data acquisition. Data
integration and reduction were performed with SAINT and XPREP
software.19 Multiscan empirical absorption corrections were applied to
the data using the program SADABS.20 Structures were solved by
direct methods using SHELXS-9721a and refined with full-matrix least-
squares on F2 using the SHELXL-9721b program package. All non-
hydrogen atoms were refined anisotropically. Hydrogen atoms
attached to all carbon atoms were geometrically fixed, while the
hydrogen atoms connected to the nitrogen atom were located from
the difference Fourier maps, and the positional and temperature
factors were refined isotropically. Structural illustrations have been
drawn with ORTEP-322a and MERCURY22b Windows.
(e) Anzenbacher, P. Jr.; Nishiyabu, R.; Palacios, M. A. Coord. Chem.
Rev. 2006, 250, 2929−2938. (f) Quesada, R.; Gale, P. A. Coord. Chem.
Rev. 2006, 250, 3219−3244. (g) Gale, P. A.; García-Garrido, S. E.;
Garric, J. Chem. Soc. Rev. 2008, 37, 151−190. (h) Dydio, P.; Zielinski,
̃
T.; Jurczak, J. Org. Lett. 2010, 12, 1076−1078. (i) Cafeo, G.; Kohnke,
F. H.; White, A. J. P.; Garozzo, D.; Messina, A. Chem.−Eur. J. 2007, 13,
649−656. (j) Kim, J.-I.; Juwarker, H.; Liu, X.; Lah, M. S.; Jeong, K.-S.
Chem. Commun. 2010, 46, 764−766. (k) McConnell, A. J.; Serpell, C.
J.; Thompson, A. L.; Allan, D. R.; Beer, P. D. Chem.−Eur. J. 2010, 16,
1256−1264. (l) Gross, D. E.; Yoon, D.-W.; Lynch, V. M.; Lee, C.-H.;
Sessler, J. L. J. Inclusion Phenom. Macrocyclic Chem. 2010, 66, 81−85.
(m) Yoo, J.; Kim, M.-S.; Hong, S.-J.; Sessler, J. L.; Lee, C.-H. J. Org.
Chem. 2009, 74, 1065−1069. (n) Edwards, P. R.; Hiscock, J. R.; Gale,
P. A.; Light, M. E. Org. Biomol. Chem. 2010, 8, 100−106.
(o) Katsiaouni, S.; Dechert, S.; Brinas, R. P.; Bruckner, C.; Meyer,
F. Chem.−Eur. J. 2008, 14, 4823−4835. (p) Menand, M.; Jabin, I.
Chem.−Eur. J. 2010, 16, 2159−2169. (q) Svec, J.; Necas, M.; Sindelar,
V. Angew. Chem., Int. Ed. 2010, 49, 2378−2381.
(3) (a) Choi, K.; Hamilton, A. D. J. Am. Chem. Soc. 2003, 125,
10241−10249. (b) Kang, S. O.; Llinares, J. M.; Powell, D.;
VanderVelde, D.; Bowman-James, K. J. Am. Chem. Soc. 2003, 125,
10152−10153. (c) Otto, S.; Kubik, S. J. Am. Chem. Soc. 2003, 125,
7804−7805. (d) Bondy, C. R.; Loeb, S. J. Coord. Chem. Rev. 2003, 240,
77−99. (e) Arunachalam, M.; Ghosh, P. Inorg. Chem. 2010, 49, 943−
951.
(4) (a) Nishizawa, S.; Bhlmann, P.; Iwao, M.; Umezawa, Y.
Tetrahedron Lett. 1995, 36, 6483−6486. (b) Nishizawa, S.; Kato, R.;
Hayashita, T.; Teramae, N. Anal. Sci. 1998, 14, 595−597. (c) Xiao, K.
P.; Bhlmann, P.; Umezawa, Y. Anal. Chem. 1999, 71, 1183−1187.
(d) Jimenz Blanco, J. L.; Benito, J. M.; Mellet, C. O.; Fernndez, J. M.
G. Org. Lett. 1999, 1, 1217−1220. (e) Hayashita, T.; Onodera, T.;
Kato, R.; Nishizawa, S.; Teramae, N. Chem. Commun. 2000, 755−756.
(f) Tozawa, T.; Misawa, Y.; Tokita, S.; Kubo, Y. Tetrahedron Lett.
2000, 41, 5219−5223. (g) Kato, R.; Nishizawa, S.; Hayashita, T.;
Teramae, N. Tetrahedron Lett. 2001, 42, 5053−5056. (h) Gunnlaugs-
son, T.; Davis, A. P.; Glynn, M. Chem. Commun. 2001, 2556−2557.
(i) Sasaki, S.; Citterio, D.; Ozawa, S.; Suzuki, K. J. Chem. Soc., Perkin
Trans. 2 2001, 2309−2313. (j) Lee, D. H.; Lee, H. Y.; Lee, K. H.;
Hong, J. L. Chem. Commun. 2001, 1188−1189. (k) Hennrich, G.;
Sonnenschein, H.; Resch-Genger, U. Tetrahedron Lett. 2001, 42,
2805−2808. (l) Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Soto,
J. Tetrahedron Lett. 2002, 43, 2823−2825. (m) Lee, D. H.; Lee, H. Y.;
Hong, J.-I. Tetrahedron Lett. 2002, 43, 7273−7276. (n) Kondo, S.;
Nagamine, M.; Yano, Y. Tetrahedron Lett. 2003, 44, 8801−8804.
(o) Gunnlaugsson, T.; Kruger, P. E.; Lee, T. C.; Parkesh, R.; Pfeffer, F.
M.; Hussey, G. M. Tetrahedron Lett. 2003, 44, 6575−6578.
(p) Sansone, F.; Chierici, E.; Casnati, A.; Ungaro, R. Org. Biomol.
Chem. 2003, 1, 1802−1809. (q) Gunnlaugsson, T.; Davis, A. P.;
Hussey, G. M.; Tierney, J.; Glynn, M. Org. Biomol. Chem. 2004, 2,
1856−1863. (r) Amendola, V.; Boiocchi, M.; Esteban-Gomez, D.;
Fabbrizzi, L.; Monzani, E. Org. Biomol. Chem. 2005, 3, 2632−2639.
(s) Sisson, A. L.; Clare, J. P.; Davis, A. P. Chem. Commun. 2005, 5263−
5265. (t) Turner, D. R.; Paterson, M. J.; Steed, J. W. J. Org. Chem.
2006, 71, 1598−1608. (u) Amendola, V.; Boiocchi, M.; Colasson, B.;
Fabbrizzi, L. Inorg. Chem. 2006, 45, 6138−6147. (v) Allevi, M.;
Bonizzoni, M.; Fabbrizzi, L. Chem.−Eur. J. 2007, 13, 3787−3795.
(w) Pescatori, L.; Arduini, A.; Pochini, A.; Ugozzoli, F.; Secchi, A. Eur.
J. Org. Chem. 2008, 109−120. (x) Caltagirone, C.; Hiscock, J. R.;
Hursthouse, M. B.; Light, M. E.; Gale, P. A. Chem.−Eur. J. 2008, 14,
10236−10243. (y) Meshcheryakov, D.; Arnaud-Neu, F.; Bohmer, V.;
Bolte, M.; Cavaleri, J.; Hubscher-Bruder, V.; Thondorf, I.; Werner, S.
Org. Biomol. Chem. 2008, 6, 3244−3255. (z) Ravikumar, I.;
Lakshminarayanan, P. S.; Arunachalam, M.; Suresh, E.; Ghosh, P.
Dalton Trans. 2009, 4160−4168.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthetic procedures, NMR, IR, LC-MS, UV−vis, and optical
micrograph images of crystals, and crystallographic data. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
*Phone: +91-361-2582313. Fax: +91-361-2582349. E-mail:
■
ACKNOWLEDGMENTS
■
We acknowledge DST (SR/S1/IC-01/2008) and CSIR (01-
2235/08/EMR-II), New Delhi, India, for financial support, CIF
and IIT Guwahati for providing the instrument facility, DST
FIST for the single-crystal X-ray diffraction facility, and S. K.
Dey for scientific discussion. A.B. thanks IIT Guwahati for a
fellowship.
REFERENCES
■
(1) (a) Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion Receptor
Chemistry; Royal Society of Chemistry: Cambridge, 2006. (b) Bianchi,
A.; Bowman-James, K.; García-Espana, E. Supramolecular Chemistry of
̃
Anions; Wiley-VCH: New York, 1997. (c) Stibor, I. Anion Sensing.
Topics in Current Chemistry; Springer: Berlin, 2005. (d) Schmidtchen,
F. P.; Berger, M. Chem. Rev. 1997, 97, 1609−1646.
(2) (a) Gale, P. A.; Anzenbacher, P. Jr.; Sessler, J. L. Coord. Chem.
Rev. 2001, 222, 57−102. (b) Beer, P. D.; Gale, P. A. Angew. Chem., Int.
Ed. 2001, 40, 486−516. (c) Sessler, J. L.; Camiolo, S.; Gale, P. A.
Coord. Chem. Rev. 2003, 240, 17−55. (d) Gale, P. A. In The
Encyclopedia of Supramolecular Chemistry; Atwood, J. L., Steed, J. W.,
Eds.; Marcel Dekker: New York, 2004; Vol. 1, pp 31−41.
(5) (a) Anzenbacher, P. Jr.; Nishiyabu, R.; Palacios, M. A. Coord.
Chem. Rev. 2006, 2929−2938. (b) Sessler, J. L.; Katayev, E.; Pantos, G.
D.; Scherbakov, P.; Reshetova, M. D.; Khrustalev, V.; Lynch, V. M.;
Ustynyuk, Y. A. J. Am. Chem. Soc. 2005, 127, 11442−11446. (c) Sessler,
J. L.; Davis, J. M. Acc. Chem. Res. 2001, 34, 989−997.
888
dx.doi.org/10.1021/ic201656y | Inorg. Chem. 2012, 51, 882−889