involves the incorporation of orthogonally protected
lanthionines as building blocks in their solid-phase
synthesis.7 Therefore, several synthetic approaches to
lanthionine (Lan) and β-methyllanthionine (MeLan)
monomers have been described in recent years.2,8 More-
over, the synthesis of isomers namely norlanthionines (nor-
Lan)9 and R-methylnorlanthionines (R-Me-nor-Lan),10
which consist of an alanyl and a β-alanyl or a R-methyl-
β-alanyl residues, respectively, have beenreported andnor-
Lan has been incorporated in a cyclic peptide analog of the
ring C of lantibiotic nisin.11
Taking into account the importance of these bis-R-
amino acids, the development of a new and efficient
synthesis of these systems seems to be of interest. Herein,
we report a biomimetic approach to Lan and MeLan
exploiting the high nucleophilicity of the sulfhydryl group
of Cys in a stereoselective Michael reaction of the con-
venient protected cysteine derivative onto chiral dehydro-
alanine and dehydrobutyrine methyl esters (Figure S1, SI).
Despite being one ofthe mostimportant and widely used
synthetic tools in organic synthesis,12 there are relatively
few reports on the use of the Michael addition of nucleo-
philes to chiral R,β-dehydroamino acids,13 and in most
cases chirality is present in both amino and carboxylic acid
groups, involving cyclic systems such as oxazolidinones or
dehydrodiketopiperazines.14
sulfa-Michael additions onto chiral dehydroamino acids.16
The use of Michael additions of cysteine onto Dha/Dhb in
linear lantibiotic precursors (in the absence of enzymes) is
well documented16dÀg and these reactions frequently are
stereoselective when a “natural” linear sequence is used.
Likely, the closest work to the present study is the con-
vergent synthesis of peptide conjugates using the dehy-
droalanine moiety of several dehydropeptides for
chemoselective ligations; however no asymmetric induc-
tion by the chiral backbone of the peptide was observed in
the protonation of the enolate intermediate formed by the
initial Michael addition.17
Figure 1. Dehydroamino acids 1, 2, and 3.
We recently reported an efficient synthesis of chiral
dehydroamino acid derivatives 1À3 as potential chiral
building blocks for the Michael addition18 (Figure 1).
Now, in this communication, their absolute configurations
are confirmed by X-ray analysis (Figure S2, SI). It is
important to highlight that, while several chiral dehydro
amino acids have been used for developing stereoselective
Michael reactions,16,19 there are few examples concerning
chiral building blocks in which the dehydroamino acid
displays chirality exclusively in the amino moiety, as a
chiral enecarbamate.20
In particular, several approaches have been documented
for diastereo- and enantiocontrol in the conjugate addition
of sulfur-based nucleophiles toMichael acceptors,15 and to
the best of our knowledge, there are only a few examples of
(7) (a) Bregant, S.; Tabor, A. B. J. Org. Chem. 2005, 70, 2430. (b)
Ross, A. C.; Liu, H.; Pattabiraman, V. R.; Vederas, J. C. J. Am. Chem.
Soc. 2010, 132, 462. (c) Galande, A. K.; Spatola, A. F. Lett. Pept. Sci.
2002, 8, 247. (d) Mothia, B.; Appleyard, A. N.; Wadman, S.; Tabor,
A. B. Org. Lett. 2011, 13, 4216.
(16) (a) Saghiyan, A. S.; Geolchanyan, A. V.; Djamgaryan, S. M.;
Vardapetyan, S. M.; Tararov, V. I.; Kuz’mina, N. A.; Ikonnikov, N. S.;
Belokon, N. Y.; North, M. Russ. Chem. Bull. 2000, 49, 1460.
(b) Saghiyan, A. S.; Stepanyan, L. A.; Manasyan, L. L.; Geolchanyan,
A. V.; Djamgaryan, S. M.; Ajvazyan, H. R.; Panosyan, H. A.; Maleev,
V. I.; Saveleva, T. F. Tetrahedron: Asymmetry 2010, 21, 2638.
(8) Some examples: (a) Narayan, R. S.; VanNieuwenhze, M. S. Org.
Lett. 2005, 7, 2655. (b) Swali, V.; Matteucci, M.; Elliot, R.; Bradley, M.
Tetrahedron 2002, 58, 9101. (c) Zhu, X.; Schmidt, R. R. Eur. J. Org.
€
Chem. 2003, 4069. (d) Shao, H.; Wang, S. H.; Lee, C.; Osapay, G.;
€
Goodman, M. J. Org. Chem. 1995, 60, 2956. (e) du Vigneaud, B. J. Biol.
Chem. 1941, 138, 151–154. (f) Wakamiya, T.; Oda, Y.; Fukase, K.;
Shiba, T. Bull. Chem. Soc. Jpn. 1985, 58, 536. (g) Cobb, S. L.; Vederas,
J. C. Org. Biomol. Chem. 2007, 5, 1031. (h) Martin, N. I. J. Org. Chem.
(c) Schmidt, U.; Ohler, E. Angew. Chem., Int. Ed. Engl. 1976, 15, 42.
(d) Burrage, S.; Raynham, T.; Williams, G.; Essex, J. W.; Allen, C.;
Cardno, M.; Swali, V.; Bradley, M. Chem.;Eur. J. 2000, 6, 1455.
(e) Zhu, Y.; Gieselman, M. D.; Zhou, H.; Averin, O.; van der Donk,
W. A. Org. Biomol. Chem. 2003, 1, 3304. (f) Polinsky, A.; Cooney, M. G.;
€
2009, 74, 946. (i) Seyberth, T.; Voss, S.; Brock, R.; Wiesmuller, K.-H.;
€
Jung, G. J. Med. Chem. 2006, 49, 1754. (j) Smith, N. D.; Goodman, M.
Org. Lett. 2003, 5, 1035.
Toy-Palmer, A.; Osapay, G.; Goodman, M. J. Med. Chem. 1992, 35, 4185.
(g) Paul, M.; van der Donk, W. A. Mini-Rev. Org. Chem. 2005, 2, 23.
(17) (a) Zhu, Y.; van der Donk, W. A. Org. Lett. 2001, 3, 1189. (b)
Galonic, D. P.; van der Donk, W. A.; Gin, D. Y. Chem.;Eur. J. 2003, 9,
5997.
(9) (a) Mustapa, M. F. M.; Harris, R.; Mould, J.; Chubb, N. A. L.;
Schultz, D.; Driscoll, P. C.; Tabor, A. B. Tetrahedron Lett. 2002, 43,
8363. (b) Mustapa, M. F. M.; Harris, R.; Bulic-Subanovic, N.; Elliott,
S. L.; Bregant, S.; Groussier, M. F. A.; Mould, J.; Schultz, D.; Chubb,
N. A. L.; Gaffney, P. R. J.; Driscoll, P. C.; Tabor, A. B. J. Org. Chem.
2003, 68, 8185.
ꢀ
ꢀ
(18) (a) Aydillo, C.; Avenoza, A.; Busto, J. H.; Jimenez-Oses, G.;
Peregrina, J. M.; Zurbano, M. M. Tetrahedron: Asymmetry 2008, 19,
ꢀ
ꢀ
2829. (b) Aydillo, C.; Jimenez-Oses, G.; Busto, J. H.; Peregrina, J. M.;
ꢀ
ꢀ
(10) Avenoza, A.; Busto, J. H.; Jimenez-Oses, G.; Peregrina, J. M.
Org. Lett. 2006, 8, 2855.
Zurbano, M. M.; Avenoza, A. Chem.;Eur. J. 2007, 13, 4840.
ꢀ
´
(19) Cativiela, C.; Dıaz-de-Villegas, M. D.; Galvez, J. A. Can. J.
Chem. 1992, 70, 2325.
(11) Mustapa, M. F. M.; Harris, R.; Esposito, D.; Chubb, N. A. L.;
Mould, J.; Schultz, D.; Driscoll, P. C.; Tabor, A. B. J. Org. Chem. 2003,
68, 8193.
(12) Perlmutter, P. Conjugate Addition Reactions in Organic Synth-
esis; Pergamon Press: Oxford, U.K., 1992.
(20) For recents reviews on the use of enecarbamates in stereoselec-
tive synthesis, see: (a) Matrubara, R.; Kobayashi, S. Acc. Chem. Res.
2008, 41, 292. (b) Gopalaiah, K.; Kagan, H. B. Chem. Rev. 2011, 111,
4599. For an example of asymmetric conjugate addition using a chiral
enecarbamate similar to that shown in this paper, see: (c) Lander, P. A.;
Hegedus, L. S. J. Am. Chem. Soc. 1994, 116, 8126.
(13) (a) Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1988, 159.
€
(b) Bonauer, C.; Walenzyk, T.; Konig, B. Synthesis 2006, 1.
(14) (a) Javidan, A.; Schafer, K.; Pyne, S. G. Synlett 1997, 100.
(b) Pyne, S. G.; Javidan, A.; Skeleton, B. W.; White, A. H. Tetrahedron
1995, 51, 5157. (c) Bull, S. D.; Davies, S. G.; O’Shea, M. D. J. Chem.
Soc., Perkin Trans. 1 1998, 3657. (d) Bull, S. D.; Davies, S. G.; Garner,
A. C.; O’Shea, M. D. J. Chem. Soc., Perkin Trans. 1 2001, 3281.
(21) (a) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S.;
Sacramento, J.; Sebastiao, J. J. Chem. Soc., Perkin Trans. 1 2000,
3317. (b) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S.; Sacramento,
J. J. Chem. Soc., Perkin Trans. 1 2001, 3167. (c) Abreu, A. S.; Silva,
N. O.; Ferreira, P. M. T.; Queiroz, M.-J. R. P. Eur. J. Org. Chem. 2003,
1537. (d) Naidu, B. N.; Sorenson, M. E.; Connolly, T. P.; Ueda, Y.
J. Org. Chem. 2003, 68, 10098.
€
(15) (a) Enders, D.; Luttgen, K.; Narine, A. A. Synthesis 2007, 959.
€
(b) Krause, N.; Hoffmann-Roder, A. Synthesis 2001, 171.
Org. Lett., Vol. 14, No. 1, 2012
335