Journal of the American Chemical Society
Communication
(8) For Pd-catalyzed oxidative trifluoromethylation, see: (a) Wang,
X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648. (b) Mu,
X.; Chen, S.; Zheng, X.; Liu, G. Chem.Eur. J. 2011, 17, 6039.
(9) For the stoichiometric reaction and mechanistic studies of the
oxidative trifluoromethylation, see: (a) Ball, N. D.; Kampf, J. W.;
Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878. (b) Ye, Y.; Ball,
N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132,
14682. (c) Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S. J. Am. Chem.
Soc. 2011, 133, 7577. (d) Racowski, J. M.; Ball, N. D.; Sanford, M. S.
J. Am. Chem. Soc. 2011, 133, 18022.
Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009,
131, 10974.
(23) Compared to noneffective bis-nitrogen ligands L1−L4 and L6,
ligand L5, which contains an acid proton, is easy to transform into a
monoionic ligand.
(24) For detailed analysis, see the Supporting Information.
(25) Other mechanistic pathways cannot be excluded at this point.
Further investigations are ongoing.
(10) For Cu-catalyzed allylic C−H bond trifluoromethylation, see:
(a) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50,
9120. (b) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.;
Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300. (c) Wang, X.;
Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc.
2011, 133, 16410. For Cu-catalyzed trifluoromethylation of terminal
alkyne, see: Chu, L.-L.; Qing, F.-L. J. Am. Chem. Soc. 2010, 132, 7262.
(11) For some recent reviews on the oxidative difunctionalization of
alkenes, see: (a) Jensen, K. H.; Sigman, M. S. Org. Biomol. Chem. 2008,
6, 4083. (b) Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem.
2007, 46, 1910. (c) Jacques, B.; Muniz, K. In Catalyzed Carbon−
̃
Heteroatom Bond Formation; Yudin, A. K., Ed.; Wiley-VCH:
Weinheim, 2010; p 119. (d) Chemler, S. R. Org. Biomol. Chem.
2009, 7, 3009. (e) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
̃
(12) (a) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc.
2005, 127, 7690. (b) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128,
7179. (c) Desai, L. V.; Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46,
5737.
́
(13) (a) Iglesias, A.; Per
́
ez, E. G.; Muniz, K. Angew. Chem., Int. Ed.
̃
2010, 49, 8109. (b) Streuff, J.; Hovelmann, C. H.; Nieger, M.; Muniz,
K. J. Am. Chem. Soc. 2005, 127, 14586. (c) Muniz, K. J. Am. Chem. Soc.
2007, 129, 14542. (d) Sibbald, P. A.; Michael, F. E. Org. Lett. 2009, 11,
1147.
̈
̃
̃
(14) (a) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131,
3846. (b) Li, Y.; Song, D.; Dong, V. M. J. Am. Chem. Soc. 2008, 130,
2962.
(15) Wu, T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
(16) TMSCF3 is available from Green Chemical Co. in China for
U.S. $60/100 g.
(17) For some reviews on biologically active compounds containing
oxindole moieties, see: (a) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Catal.
Synth. 2010, 352, 1381. (b) Galliford, C. V.; Scheidt, K. A. Angew.
Chem., Int. Ed. 2007, 46, 8748. (c) Marti, C.; Carreira, E. M. Eur. J.
Org. Chem. 2003, 2209. (d) Lin, H.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2003, 42, 36. (e) Jensen, B. S. CNS Drug Rev. 2002, 8, 353.
(18) For synthesis of oxindoles by using Pd catalyst, see: (a) Jaegli,
S.; Dufour, J.; Wei, H.-L.; Piou, T.; Duan, X.-H.; Vors, J.-P.; Neuville,
L.; Zhu, J. Org. Lett. 2010, 12, 4498. (b) Wei, H.-L.; Piou, T.; Dufour,
J.; Neuville, L.; Zhu, J. Org. Lett. 2011, 13, 2244. (c) Pinto, A.; Jia, Y.;
Neuville, L.; Zhu, J. Chem. Eur. J. 2007, 13, 961.
(19) In the absence of Pd catalyst, the reaction affords
aryltrifluoromethylation product in 31% yield (24 h), and 27% yield
with 1 equiv of TEMPO. It is possible that this transformation is
promoted by PhI(OAc)2. For some selective examples of hypervalent
iodine-promoted olefin functionalization, see: (a) Roben, C.; Souto,
̈
́
J. A.; Gonzalez, Y.; Lishchynskyi, A.; Muniz, K. Angew. Chem., Int. Ed.
̃
2011, 50, 9478. (b) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011,
133, 3658. (c) Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc. 2010,
132, 1249.
(20) For the reaction in eq 1, no H/D scrambling was observed in
the recovered starting material 1a and 1a-d5. For details, see the
Supporting Information.
(21) For the corresponding KIE value of the electrophilic aromatic
substitution process, see: (a) Tunge, J. A.; Foresee, L. N. Organo-
metallics 2005, 24, 6440−6444. (b) Taylor, R. Electrophilic Aromatic
Substitution; John Wiley & Sons Inc.: New York, 1990; pp 25−57.
(22) Electrosprayionization commonly results in loss of one X-type
ligand from Pd complexes.For details, see ref 9d and the following:
881
dx.doi.org/10.1021/ja210614y | J. Am. Chem.Soc. 2012, 134, 878−881