Y. Hao et al. / Tetrahedron 68 (2012) 552e558
557
potential reference. The potentials versus NHE were calculated by
addition of 630 mV to the potentials versus Fc/Fcþ.11a Electro-
chemical impedance spectroscopy (EIS) for DSC with forward
bias ꢁ0.7 V under dark was measured with an impedance/gain-
phase analyzer (PARSTAT 2273, USA). The spectra were scanned
in a frequency range of 10ꢁ2 Hz to 105 Hz at room temperature. The
alternate current (AC) amplitude was set at 10 mV.
(Grant no. LS2010042), the Ministry of Science and Technology
(MOST) (Grant 2001CCA02500), the Swedish Energy Agency, K&A
Wallenberg Foundation, and the State Key Laboratory of Fine
Chemicals (KF0805).
Supplementary data
Supplementary data associated with this article can be found in
4.2. DSC fabrication
The DSCs were fabricated as reported in literature.28 A layer of
13 nm (DHS-TPP3, Heptachroma, China) paste (ca. 2
coated on the F-doped tin oxide conducting glass (TEC15,
15 /square, Pilkington, USA) by screen printing and then dried for
6 min at 125 ꢀC. This procedure was repeated for eight times (ca.
16 m) and coated by a layer of 300 nm (DHS-SLP1, Heptachroma,
China) titania paste (ca. 4 m) as scattering layer. The double-layer
TiO2 electrodes (area: 6ꢂ6 mm) were gradually heated under an air
flow at 325 ꢀC for 5 min, at 375 ꢀC for 5 min, at 450 ꢀC for 15 min,
and at 500 ꢀC for 15 min. The sintered film was further treated with
40 mM TiCl4 aqueous solution at 70 ꢀC for 30 min, then washed
with ethanol and water, and annealed at 500 ꢀC for 30 min. After
the film was cooled to 40 ꢀC, it was immersed into a 2ꢂ10ꢁ4 M dye
solution in CH2Cl2 with CDCA (2ꢂ10ꢁ4 M) and maintained under
dark for 3 h. The sensitized TiO2 electrode was then rinsed with the
solvent of dye-bath and dried. The hermetically sealed cells were
fabricated by assembling the dye-loaded film as the working elec-
trode and Pt-coated conducting glass as the counter electrode
mm) was
References and notes
U
€
1. O’Regan, B.; Gratzel, M. Nature 1991, 353, 737.
€
2. (a) Gratzel, M. Nature 2001, 414, 338; (b) Nazeeruddin, M. K.; Pechy, P.; Re-
nouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey,
L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grtazel, M. J.
Am. Chem. Soc. 2001, 123, 1613; (c) Nazeeruddin, M. K.; De Angelis, F.; Fantacci,
S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem.
m
€
m
€
Soc. 2005, 127, 16835; (d) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide,
N.; Han, L. Jpn. J. Appl. Phys. 2006, 45, 638; (e) Nazeeruddin, M. K.; Bessho, T.;
Cevey, L.; Ito, S.; Klein, C.; De Angelis, F.; Fantacci, S.; Comte, P.; Liska, P.; Imai,
€
H.; Gratzel, M. J. Photochem. Photobiol., A 2007, 185, 331; (f) Gao, F.; Wang, Y.;
Zhang, J.; Shi, D.; Wang, M.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.;
€
Gratzel, M. Chem. Commun. 2008, 2635; (g) Hagfeldt, A.; Boschloo, G.; Sun, L.;
Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
3. (a) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama,
K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597; (b) Wang, Z.; Cui,
Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19, 1138; (c)
Wang, Z.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C
2007, 111, 7224.
4. (a) Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.;
Sugihara, H.; Arakawa, H. Chem. Commun. 2000, 1173; (b) Sayama, K.; Tsuka-
goshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. J. Phys.
Chem. B 2002, 106, 1363.
5. (a) Ma, X.; Hua, J.; Jin, Y.; Meng, F.; Zhan, W.; Tian, H. Tetrahedron 2008, 64, 345;
(b) Zhan, W.; Wu, W.; Hua, J.; Jing, Y.; Meng, F.; Tian, H. Tetrahedron Lett. 2007,
48, 2461.
6. (a) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126,
12218; (b) Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Horiuchi, T.; Miura,
separated with a hot-melt Surlyn 1702 film (25 mm, Dupont). The
electrolyte consisting of 0.6 M 1,2-dimethyl-3-propylimidazolium
iodide (DMPII), 0.06 M LiI, 0.04 M I2, 0.4 M 4-tert-butylpyr-
idine(TBP) in acetonitrile was introduced into the cell via vacuum
backfilling by the hole in the back of the counter electrode. Finally,
the hole was also sealed using Surlyn 1702 film and cover glass.
€
H.; Ito, S.; Uchida, S.; Gratzel, M. Adv. Mater. 2005, 17, 813.
7. (a) Wang, Z.; Li, F.; Huang, C. J. Phys. Chem. B 2001, 105, 9210; (b) Wang, Z.; Li, F.;
Huang, C. Chem. Commun. 2000, 2063; (c) Chen, Y.; Li, C.; Zeng, Z.; Wang, W.;
Wang, X.; Zhang, B. J. Mater. Chem. 2005, 15, 1654.
4.3. Photovoltaic properties measurements
8. (a) Shibano, Y.; Umeyama, T.; Matano, Y.; Imahori, H. Org. Lett. 2007, 9, 1971; (b)
Edvinsson, T.; Li, C.; Pschirer, N.; Schoneboom, J.; Eickemeyer, F.; Sens, R.; Bos-
chloo, G.; Herrmann, A.; Mullen, K.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 15137.
9. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.;
Yanagida, S. Chem. Mater. 2004, 16, 1806.
The irradiation source for the photocurrentevoltage (JeV)
measurement is an AM 1.5 solar simulator (16S-002, Solar Light Co.
Ltd., USA). The incident light intensity was 100 mW cmꢁ2 calibrated
with a standard Si solar cell. The tested solar cells were masked to
a working area of 0.159 cm2. The photocurrentevoltage curves
were obtained by the linear sweep voltammetry (LSV) method
using an electrochemical workstation (LK9805, Lanlike Co. Ltd.,
China). The measurement of the incident photon-to-current con-
version efficiency (IPCE) was performed by a Hypermonolight
(SM-25, Jasco Co. Ltd., Japan). The short-circuit photocurrent den-
sity (Jsc) was calibrated by integrating the IPCE value tuned light
density of AM 1.5 against wavelength.29
10. Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H.
Chem. Lett. 2000, 29, 316.
11. (a) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L.
Chem. Commun. 2006, 2245; (b) Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.;
Park, C.; Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G.; Kim, C. Chem. Commun.
2007, 4887; (c) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin,
P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550; (d)
Liang, M.; Xu, W.; Cai, F.; Chen, P.; Peng, B.; Chen, J.; Li, Z. J. Phys. Chem. C 2007,
111, 4465; (e) Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F. J. Phys. Chem. C 2008,
112, 874; (f) Tsai, M. S.; Hsu, Y. C.; Lin, J. T.; Chen, H. C.; Hsu, C. P. J. Phys. Chem. C
2007, 111, 18785; (g) Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H. J. Org.
Chem. 2008, 73, 3791; (h) Velusamy, M.; JustinThomas, K. R.; Lin, J. T.; Hsu, Y. C.;
Ho, K. C. Org. Lett 2005, 7, 1899.
4.4. Theoretical calculation methods
12. Tian, H. N.; Yang, X. C.; Chen, R. K.; Pan, Y. Z.; Li, L.; Hagfeldt, A.; Sun, L. Chem.
Commun. 2007, 3741.
The geometrical structures of the two dyes were optimized by
performed density functional theory (DFT) calculations and time-
dependent DFT (TDDFT) calculations of the excited states at
the B3LYP/6-31þG(d) level with the Gaussian 03W program pack-
age.30 Polarizabilities and dipole moments were calculated at the
B3LYP/6-31þG(d) level of theory. Optimized 3D structures were
generated with the ChemBio3D ultra 11.0 program.
13. (a) Chen, R.; Yang, X.; Tian, H.; Wang, X.; Hagfeldt, A.; Sun, L. Chem. Mater. 2007,
19, 4007; (b) Chen, R.; Yang, X.; Tian, H.; Sun, L. J. Photochem. Photobiol., A 2007,
189, 295.
14. (a) Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am.
Chem. Soc. 2006, 128, 14256; (b) Kim, D.; Lee, J. K.; Kang, S. O.; Ko, J. Tetrahedron
2007, 63, 1913.
15. Wang, Z.-S.; Li, F.-Y.; Huang, C.-H.; Wang, L.; Wei, M.; Jin, L.-P.; Li, N.-Q. J. Phys.
Chem. B 2000, 104, 9676.
16. Ehret, A.; Stuhl, L.; Spitler, M. T. J. Phys. Chem. B 2001, 105, 9960.
17. Li, S.-L.; Jiang, K.-J.; Shao, K.-F.; Yang, L.-M. Chem. Commun. 2006, 2792.
18. Hara, K.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H.
Chem. Commun. 2003, 252.
Acknowledgements
19. Qin, P.; Yang, X.; Chen, R.; Sun, L.; Marinado, T.; Edvinsson, T.; Boschloo, G.;
Hagfeldt, A. J. Phys. Chem. C 2007, 111, 1853.
20. Zeng, W.-D.; Cao, Y.-M.; Bai, Y.; Wang, Y.-H.; Shi, Y.-S.; Zhang, M.; Wang, F.-F.;
Pan, C.-Y.; Wang, P. Chem. Mater. 2010, 22, 1915.
21. Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang, P. Chem. Commun.
2009, 2198.
We gratefully acknowledge the financial support of this work
from China Natural Science Foundation (Grant 21076039), the Na-
tional Basic Research Program of China (Grant no. 2009CB220009),
the Program for Innovative Research Team of Liaoning Province