Scheme 1. Gold Complexed Allene
Scheme 2. Allene Screening for Gold Catalyzed [2 þ 2] Cy-
cloaddition Reaction
Gold salts have recently been demonstrated to be excep-
tional reagents for the activation of CꢀC multiple bonds.7
As shown in Scheme 1, the reactivity of goldꢀallene
complexes I closely resembled that of the AuꢀC bond
functionalized allylic cation II (Scheme 1), which thereby
led to the realization of the gold catalyzed intramolecular
cycloaddition of the allenes with alkenes or dialkenes, to
give various [2 þ 2],8 [2 þ 3],9 [4 þ 2],10 and [4 þ 3]10b,11
cycloadducts.12 However, extending this strategy to an
intermolecular process remains less explored.13 We herein
will report the gold catalyzed intermolecular [2 þ 2] cycload-
dition of allene sulfonamides with electron-rich olefins, to
provide an efficient new approach to the multifunctional
cyclobutane derivatives. In addition, we also prepared a series
of allene sulfonamide dimerization products.
Inspired by the gold catalyzed intermolecular reactions
of allenes with amines,14 alcohols,15 and electron-rich aryl
groups,16 we reasoned that the enhanced olefin nucleophil-
icity might facilitate the suggested intermolecular [2 þ 2]
process. Electron-rich vinyl ether a was thus employed for
the initial investigation. At first, several allenes with dif-
ferent functionalities were investigated (Scheme 2, eq 1).
No reaction was found for alkyl allene 1, probably due to
its low reactivity. Alleneamides 2, 3, and 4 were tested.
Figure 1. X-ray chromatograph of compound 5a.
2 and 3 gave no reactions, while 2-oxazolidinone allene-
amide 4 afforded an inseparable mixture.16 Recognizing
that amide groups might coordinate and deactivate the
gold catalyst, alleneamide 5, which contains a low Lewis
basic sulfonamide group, was then explored.17 To our
delight, the reaction of 5 with vinyl ether a gave vinyl
cyclobutane 5a in 10% yield, and dimerization product
D-5 in 35% yield. The structure of5a, as shown in Figure 1,
was identified to be a vinylamide containing 2-oxabicyclo-
[4.2.0]octane by its X-ray chromatograph, in which vinyl-
amine oriented toward the oxygen atom selectively.18
Next, reactionoptimizations wereperformedtoimprove
(8) (a) Oh, C. H.; Kim, A. Synlett 2008, 777. (b) Luzung, M. R.;
ꢀ
Mauleon, P.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12402. (c)
Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45,
7896. (d) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Synlett
2006, 575. (e) Zhang, L.-M. J. Am. Chem. Soc. 2005, 127, 16804. (f)
Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (g) Echavarren,
A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431.
(9) (a) Zhang, G.-Z.; Catalano, V. J.; Zhang, L.-M. J. Am. Chem.
Soc. 2007, 129, 11358. (b) Huang, X.; Zhang, L.-M. J. Am. Chem. Soc.
2007, 129, 6398.
ꢀ
ꢀ
(10) (a) Mauleon, P.; Zeldin, R. M.; Gonzalez, A. Z.; Toste, F. D.
ꢀ
J. Am. Chem. Soc. 2009, 131, 6348. (b) Alonso, I.; Trillo, B.; Lopez, F.;
Montserrat, S.; Ujaque, G.; Castedo, L.; Lledos, A.; Mascarenas, J. L.
ꢀ
~
ꢀ
J. Am. Chem. Soc. 2009, 131, 13020. (c) Gonzalez, A. Z.; Toste, F. D.
Org. Lett. 2010, 12, 200.
˚
ꢀ
~
(11) (a) Trillo, B.; Lopez, F.; Gulias, M.; Castedo, L.; Mascarenas,
ꢀ
5a’s yield. Addition of 4 A molecular sieve to remove the
residual moisture and lowering the reaction temperature
enhanced 5a’s yield (Table 1, entry 2, 80%).
J. L. Angew. Chem., Int. Ed. 2008, 47, 951. (b) Trillo, B.; Lopez, F.;
ꢀ
Montserrat, S.; Ujaque, G.; Castedo, L.; Lledos, A.; Mascarenas, J. L.
~
Chem.;Eur. J. 2009, 15, 3336.
(12) Reviewfor[2þ 2] cycloaddition of allene: Alcaide, B.; Almendros, P.;
Aragoncillo, C. Chem. Soc. Rev. 2010, 39, 783.
In silver salt screening experiments, Ph3PAuCl/AgSbF6
performed better than other silver combinations (Table 1,
(13) An example of intermolecular [2 þ 2] cycloaddition of alkynes
ꢀ
with alkenes: Lopez-Carrillo, V.; Echavarren, A. M. J. Am. Chem. Soc.
2010, 132, 9292.
(17) Examples of the effect of sulfonamide’s Lewis basicity on the
reaction outcomes. (a) Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4,
1471. (b) Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K.
J. Am. Chem. Soc. 2010, 132, 10692. Hydrogen-bond basicity scale for
sulfonyl bases:(c) Chardin, A.; Laurence, C.; Berthelot, M.; Morrisb,
D. G. J. Chem. Soc., Perkin Trans. 2 1996, 1047.
(18) CCDC 838102 contains the supplementary crystallographic
data for compound 5a; CCDC 838101 contains the supplementary
crystallographic data for compound D-5. These data can be obtained
free of charge from the Cambridge Crystallographic Data Centre via
(14) (a) Kinder, R. E.; Zhang, Z.-B.; Widenhoefer, R. A. Org. Lett.
2008, 10, 3157. (b) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste,
F. D. J. Am. Chem. Soc. 2007, 129, 2452. (c) Nishina, N.; Yamamoto, Y.
Angew. Chem., Int. Ed. 2006, 45, 3314. (d) Lavallo, V.; Frey, G. D.;
Donnadieu, B.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed.
2008, 47, 5224. (e) Zeng, X.-M.; Soleilhavoup, M.; Bertrand, G. Org.
Lett. 2009, 11, 3166.
(15) (a) Zhang, Z.-B.; Widenhoefer, R. A. Org. Lett. 2008, 10, 2079.
(b) Paton, R. S.; Maseras, F. Org. Lett. 2009, 11, 2237.
(16) Kimber, M. C. Org. Lett. 2010, 12, 1128.
Org. Lett., Vol. 14, No. 2, 2012
437