as in the parent complex 1.9 The downfield 11B NMR signal at
10.1 ppm indicates a 3-coordinate boron.
R. Booque and F. Maseras, J. Am. Chem. Soc., 1996, 118, 10936;
(i) D. H. Motry, A. G. Brazil and M. R. Smith III, J. Am. Chem.
Soc., 1997, 119, 2743; (j) J. F. Hartwig and C. N. Muhoro,
Organometallics, 2000, 19, 30; (k) Y. D. Wang, G. Kimball,
A. S. Prashad and Y. Wang, Tetrahedron Lett., 2005, 46, 8777.
5 (a) D. R. Lantero, D. L. Ward and M. R. Smith III, J. Am. Chem.
Soc., 1997, 119, 9699; (b) D. R. Lantero, S. L. Miller, J.-Y. Cho,
D. L. Ward and M. R. Smith III, Organometallics, 1999, 18, 235.
6 Ketones: (a) D. A. Evans and A. H. Hoveyda, J. Org. Chem., 1990,
55, 519; (b) C. W. Lindsley and M. DiMare, Tetrahedron Lett.,
1994, 35, 5141; (c) G. Giffels, C. Dreisbach, U. Kragl,
M. Weiderding, H. Waldmann and C. Wandrey, Angew. Chem.,
Int. Ed. Engl., 1995, 34, 2005; (d) A. J. Blake, A. Cunningham,
A. Ford, S. J. Teat and S. Woodward, Chem.–Eur. J., 2000,
6, 3586; (e) I. Sarvary, F. Almqvist and T. Frejd, Chem.–Eur. J.,
2001, 7, 2158; (f) S.-G. Roh, Y.-C. Park, T.-J. Kim and J. H. Jeong,
Polyhedron, 2001, 20, 1961; (g) P. Hegarty, R. Lau and
W. B. Motherwell, Tetrahedron Lett., 2003, 44, 1851;
(h) M. Locatelli and P. G. Cozzi, Angew. Chem., Int. Ed., 2003,
42, 4928; (i) S. G. Roh, J. U. Yoon and J. H. Jeong, Polyhedron,
2004, 23, 2063; (j) L. Koren-Selfridge, H. N. Londino,
J. K. Vellucci, B. J. Simmons, C. P. Casey and T. B. Clark,
Organometallics, 2009, 28, 2085.
Addition of another equiv. of HBCat to 11 does not allow
for the observation of any further intermediates. Only the
release of PhCH2N(BCat)2 and formation of a mixture of 1,
(ArN)MoCl2(PMe3)319 and unknown decomposition products
was observed. How the borylimine part of 11 is reduced into
amine still remains unclear. But it is clear that this last step of a
possible catalytic cycle (Scheme 2) is assisted by HBCat.
On the other hand, 1 reacts with HBCat very sluggishly:
after 24 h at room temperature only B20% conversion of 1 to
19
a mixture of (ArN)MoCl2(PMe3)3 and a highly fluxional
dihydride complex (ArN)MoH2(PMe3)3 (12) was observed by
NMR. No oxidative addition of borane to Mo and formation
of a Mo boryl complex, such as (ArN)Mo(Cl)(BCat)(PMe3)x
(x = 2, 3),20 takes place.
A similar mechanism can be also suggested for the hydro-
boration of carbonyl compounds. Indeed, we found that the
9
reaction of HBCat with (ArN)Mo(Cl)(OBn)(PMe3)3 (8),
7 Imines: R. T. Baker, J. C. Calabrese and S. A. Westcott,
J. Organomet. Chem., 1995, 498, 109.
formed upon the reaction of 1 with PhC(O)H, immediately
regenerates complex 1. For nitriles bearing carbonyl substituents,
the insertion of the CQO and CRN moieties into the Mo–H
bond of 1 becomes competitive in the presence of large excess
of HBCat21 resulting in the loss of chemoselectivity of hydro-
boration under catalytic conditions.
8 For uncatalysed addition of active boranes to nitriles, see:
(a) Y. Chujo, I. Tomita and T. Saegusa, Macromolecules, 1994,
27, 6714; (b) K. Wade, M. G. Davidson, M. A. Fox, W. R. Gill,
T. G. Hibbert and J. A. H. Maceride, Phosphorus, Sulfur Silicon
Relat. Elem., 1997, 124–125, 73; (c) D. Jaganyi and A. Mzinyati,
Polyhedron, 2006, 25, 2730.
9 E. Peterson, A. Y. Khalimon, R. Simionescu, L. G. Kuzmina,
J. A. K. Howard and G. I. Nikonov, J. Am. Chem. Soc., 2009,
131, 908.
In conclusion, complex 1 was found to catalyse a variety of
hydroboration reactions, including the so far unknown cata-
lytic addition of HBCat to nitriles to form bis(boryl) amines.
The latter compounds can be easily converted to imines by the
reaction with aldehydes. The hydroboration of nitriles pro-
ceeds via a series of novel agostic borylamido and borylimino
complexes.
10 Uncatalysed reaction gives only 50% conversion after 2 days.
11 See the Supporting Information.
12 Similar transformations are known for bis(silyl) amines. However,
the reactions require either harsh conditions or the presence of a
catalyst: (a) N. Duffaut and J. P. Dupin, Bull. Soc. Chim. Fr., 1966,
10, 3205; (b) R. J. P. Corriu, V. Huynh, J. J. E. Moreau and
M. Pataud-Sat, J. Organomet. Chem., 1983, 225, 359;
(c) T. Morimoto and M. Sekiya, Chem. Lett., 1985, 1371.
13 For the stoichiometric reactivity of 1 with carbonyls, see ref. 9.
14 No ketone insertion into the Mo–H bond of 1 was observed under
these conditions. However, treatment of 1 with PhCN/cyclohexanone
(1 : 1) leads to a 5 : 1 mixture of 3 and (ArN)Mo(Cl)(OCy)(PMe3)3.
15 (a) H. M. M. Shearer and J. D. Sowerby, J. Chem. Soc., Dalton
Trans., 1973, 2629; (b) G. Erker, W. Fromberg, J. L. Atwood and
W. E. Hunter, Angew. Chem., 1984, 96, 72; (c) J. E. Bercaw,
D. L. Davies and P. T. Wolczanski, Organometallics, 1986, 5, 443;
(d) M. F. C. Guedes da Silva, J. J. R. Frausto da Silva and
A. J. L. Pombeiro, Inorg. Chem., 2002, 41, 219; (e) Y. Tanabe,
H. Seino, Y. Ishii and M. Hidai, J. Am. Chem. Soc., 2000, 122, 1690.
16 The observed chemoselectivity towards the formation of alkoxides
in the reaction of 1 with aldonitriles can be explained in terms of
transfer hydrogenation from 3 because nitriles react faster with 1
than aldehydes (2 h for PhCN vs. 5–6 h for PhC(O)H).
This work was supported by NSERC (DG grant to G.I.N)
and RFBR (grant to L.G.K.). A.Y.K. thanks the OGS for a
student PhD scholarship. G.I.N. further thanks the CFI/OIT
for a generous equipment grant.
Notes and references
1 H. C. Brown, Hydroboration, Wiley, NY, 1962.
2 Selected reviews: (a) L. Tonks and J. M. Williams, Contemp. Org.
Synth., 1997, 353; (b) I. Beletskaya and A. Pelter, Tetrahedron,
1997, 53, 4957; (c) T. Hayashi, in Comprehensive Asymmetric catalysis,
ed. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, NY, 1999,
vol. 1, p. 349; (d) H. Braunschweig and M. Colling, Coord. Chem.
Rev., 2001, 223, 1; (e) C. M. Crudden and D. Edwards, Eur. J. Org.
Chem., 2003, 4695; (f) W. Carruthers and I. Coldham, Modern
Methods of Organic Synthesis, Cambridge University Press,
Cambridge, 4th edn, 2004, pp. 315–331; (g) C. Pubill-Ulldemolins,
A. Bonet, C. Bo, H. Gulyas and E. Fernandez, Org. Biomol. Chem.,
2010, 8, 2667.
17 11B NMR spectra for the reaction of 3 with HBCat were taken at
ꢁ30 1C, which results in the significant broadening of 11B NMR
resonances thus preventing the extraction of accurate values of JB–H
.
18 For related agostic borylamides, see: T. D. Forster,
H. M. Tuononen, M. Parvez and R. Roesler, J. Am. Chem. Soc.,
2009, 131, 6689.
19 S. K. Ignatov, A. Y. Khalimon, N. H. Rees, A. G. Razuvaev,
P. Mountford and G. I. Nikonov, Inorg. Chem., 2009, 48, 9605.
20 Formation of boryl complexes is proposed in the hydroboration
reactions catalysed by late transition metal complexes. For example,
see ref. 3.
21 Addition of aldehydes to 1 starts with the formation of adduct
trans-(ArN)Mo(H)(Cl)(Z2-OQCRH)(PMe3)2 which in the
presence of large excess of RHC(O) rearranges slowly ( Z 5 h)
into an alkoxy complex via PMe3 dissociation (see ref. 9). Addition
of a large excess of borane could significantly accelerate this
process making it competitive with (or even faster than) the
formation of methylenamide derivatives (B2 h).
3 (a) D. Mannig and H. Noth, Angew. Chem., Int. Ed. Engl., 1985,
¨
¨
24, 878; (b) K. Burgess and M. J. Ohlmeyer, Chem. Rev., 1991,
91, 1179; (c) C. M. Vogels and S. A. Westcott, Curr. Org. Chem.,
2005, 9, 687.
4 For examples of alkene and alkyne hydroborations, see:
(a) D. A. Evans, A. R. Muci and R. Sturmer, J. Org. Chem.,
1993, 58, 5307; (b) K. Burgess and W. A. van der Donk,
Organometallics, 1994, 13, 3616; (c) K. Burgess and W. A. van
der Donk, J. Am. Chem. Soc., 1994, 116, 6561; (d) E. A. Bijpost,
R. Duchateau and J. H. Teuben, J. Mol. Catal. A: Chem., 1995,
95, 121; (e) S. Pereira and M. Srebnik, Organometallics, 1995,
14, 3127; (f) S. Pereira and M. Srebnik, Tetrahedron Lett., 1996,
37, 3283; (g) X. He and J. F. Hartwig, J. Am. Chem. Soc., 1996,
118, 1696; (h) J. F. Hartwig, C. N. Muhoro, X. He, O. Eisenstein,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 455–457 457