A.J. Ward et al. / Catalysis Today 178 (2011) 187–196
195
increases in intensity with increasing zirconium content, that is
attributable to strong Bronsted sites. In addition, the peak centred
at ∼998 cm−1 reveals the presence of weak hydrogen bonded sites.
Only materials 2–5 have Lewis acid sites that are indicated by the
peak at ∼1024 cm−1. All of the materials do show some evidence
of hydrogen bonding to the pyridine, as evidenced by the peak
[15] A. Hofmann, J. Sauer, J. Phys. Chem. B 108 (2004) 14652–14662.
[16] M. Bensitel, O. Saur, J.-C. Lavalley, B.A. Morrow, Mater. Chem. Phys. 19 (1988)
147–156.
[17] K. Arata, Green Chem. 11 (2009) 1719–1728.
[18] V.V. Brei, Teoreticheskaya i Eksperimental’naya Khimiya 41 (2005) 165–175.
[19] A. Corma, H. García, Chem. Rev. 103 (2003) 4307–4366.
[20] W.H.J. Hogarth, J.C. Diniz da Costa, G.Q. Lu, J. Power Sources 142 (2005) 223–237.
[21] G.D. Yadav, J.J. Nair, Micropor. Mesopor. Mater. 33 (1999) 1–48.
[22] A. Corma, Chem. Rev. 95 (1995) 559–614.
between 997 and 1002 cm−1
.
[23] S. Jaenicke, G.K. Chuah, V. Raju, Y.T. Nie, Catal. Surv. Asia 12 (2008) 153–169.
[24] D.J. McIntosh, R.A. Kydd, Micropor. Mesopor. Mater. 37 (2000) 281–289.
[25] M.K. Dongare, P. Singh, P.P. Moghe, P. Ratnasamy, Zeolites 11 (1991) 690–693.
[26] M.K. Dongare, D.P. Sabde, R.A. Shaikh, K.R. Kamble, S.G. Hegde, Catal. Today 49
[27] X.X. Wang, F. Lefebvre, J. Patarin, J.M. Basset, Micropor. Mesopor. Mater. 42
(2001) 269–276.
[28] M.L. Occelli, S. Biz, A. Auroux, Appl. Catal. A 183 (1999) 231–239.
[29] L.F. Chen, J.A. Wang, L.E. Norena, J. Aguilar, J. Navarrete, P. Salas, J.A. Montoya,
P. Del Angel, J. Solid State Chem. 180 (2007) 2958–2972.
[30] W. Hua, Y. Yue, Z. Gao, J. Mol. Catal. 170 (2001) 195–202.
[31] F. Li, F. Yu, Y. Li, R. Li, K. Xie, Micropor. Mesopor. Mater. 101 (2007) 250–255.
[32] M.S. Wong, H.C. Huang, J.Y. Ying, Chem. Mater. 14 (2002) 1961–1973.
[33] J. El Haskouri, S. Cabrera, C. Guillem, J. Latorre, A. Beltran, D. Beltran, M.D. Maros,
P. Amoros, Chem. Mater. 14 (2002) 5015–5022.
It is well established that the Meerwin–Ponndorf–Verley reduc-
tion is promoted by Lewis acid sites [83], however, more recent
work has shown that Bronsted sites can also be active for the catal-
ysis of this reaction [89]. Thus, the lack of Lewis acidic sites can
explain the observed low catalytic activity. The lack of activity of
the Bronsted sites is attributable to two factors: the first is that a
high density of Bronsted sites has been observed to give lower cat-
alytic activity for the Meerwin–Ponndorf–Verley reduction [89];
the second is that when zirconia materials are calcined at temper-
atures above 400 ◦C a significant decrease in catalytic activity for
the Meerwin–Ponndorf–Verley reduction results [87].
[34] J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. Engl. 38 (1999)
56–77.
4. Conclusions
[35] B.L. Newalkar, J. Olanrewaju, S. Komarneni, J. Phys. Chem.
8356–8360.
B 105 (2001)
This study has shown that 1-hexadecyl-3-methylimidazolium
bromide can be successfully used as the structure directing agent
in a one pot synthesis of mesoporous sulfated zirconia. The meso-
porosity is confirmed by the nitrogen absorption, XRD and electron
microscopy measurements. The materials, prepared with varying
ratios of zirconium to silica (up to ∼40 wt.%), displayed surface
areas in the range 343–482 m2/g and mesopore volumes ranging
from 0.43 to 1.34 cm3/g. This method of preparation of the SZ–SiO2
materials for loadings up to 41 wt.% Zr results in the formation of
nanocrystalline zirconia in the silica host, with the zirconium also
present as polydispersed nanoparticles of ZrO2 on the surface at the
higher loadings. These conclusions are based on the lack of spec-
troscopic and X-ray diffraction evidence for large domains of ZrO2
or sulfated ZrO2, even at relatively high zirconium loadings. XPS
revealed only small amounts of zirconium on the surface, consistent
with the majority of the zirconium being incorporated in the SiO2
framework. The materials display solid acid behaviour, active in the
catalysis of the Meerwin–Ponndorf–Verley reductions of aldehy-
des and ketones with pKHB values less than 1.1. Investigation of the
nature of the acidic sites of the SZ–SiO2 materials using pyridine as a
probe molecule revealed predominantly Bronsted acid sites, which,
when the materials are calcined above 400 ◦C results in a con-
siderable decrease in activity for the Meerwin–Ponndorf–Verley
reduction.
[36] D.J. Jones, J. Jiménez-Jiménez, A. Jiménez-López, P. Maireles-Torres, P. Olivera-
Pastor, E. Rodriguez-Castellón, J. Rozière, J. Chem. Soc. Chem. Commun. (1997)
431–432.
[37] M.S. Morey, G.D. Stucky, S. Schwarz, M. Froba, J. Phys. Chem. B 103 (1999)
2037–2041.
[38] X.-X. Wang, L. Veyre, F. Lefebvre, J. Patarin, J.-M. Basset, Micropor. Mesopor.
Mater. 66 (2003) 169–179.
[39] B. Rakshe, V. Ramaswamy, S.G. Hegde, R. Vetrivel, A.V. Ramaswamy, Catal. Lett.
45 (1997) 41–50.
[40] D.A. Ward, E.I. Ko, Chem. Mater. 5 (1993) 956–969.
[41] J.A. Knowles, M.J. Hudson, J. Chem. Soc. Chem. Commun. (1995) 2083–2084.
[42] M.J. Hudson, J.A. Knowles, J. Mater. Chem. 6 (1996) 89–95.
[43] U. Ciesla, S. Schacht, G.D. Stucky, K.K. Unger, F. Schüth, Angew. Chem. Int. Ed.
Engl. 35 (1996) 541–543.
[44] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature (London) 396
(1998) 152–155.
[45] J. Fan, S.W. Boettcher, G.D. Stucky, Chem. Mater. 18 (2006) 6391–6396.
[46] M.S. Wong, J.Y. Ying, Chem. Mater. 10 (1998) 2067–2077.
[47] A. Mondal, A. Zachariah, P. Nayak, B.B. Nayak, J. Am. Ceram. Soc. 93 (2009)
387–392.
[48] C.K. Krishnan, T. Hayashi, M. Ogura, Adv. Mater. 20 (2008) 2131–2136.
[49] B. Liu, R.T. Baker, J. Mater. Chem. 18 (2008) 5200–5207.
[50] F. Ye, Z. Dong, H. Zhang, Mater. Lett. 64 (2010) 1441–1444.
[51] H. Chen, J. Gu, J. Shi, Z. Liu, J. Gao, M. Ruan, D. Yan, Adv. Mater. 17 (2005)
2010–2014.
[52] S.K. Das, M.K. Bhunia, A.K. Sinha, A. Bhaumik, J. Phys. Chem. C 113 (2009)
8918–8923.
[53] M. Lutecki, O. Solcova, S. Werner, C. Breitkopf, J. Sol-Gel Sci. Technol. 53 (2010)
13–20.
[54] M. Lutecki, C. Breitkopf, Appl. Catal. A: Gen. 352 (2009) 171–178.
[55] A. Ramanathan, D. Klomp, J.A. Petersa, U. Hanefeld, J. Mol. Catal. A 260 (2006)
62–69.
[56] A. Ramanathan, M.C.C. Villalobos, C. Kwakernaak, S. Telalovic, U. Hanefeld,
Chem. Eur. J. 14 (2008) 961–972.
Acknowledgements
[57] S.-Y. Chen, J.-F. Lee, S. Cheng, J. Catal. 270 (2010) 196–205.
[58] S.-Y. Chen, L.-Y. Jang, S. Cheng, Chem. Mater. 16 (2004) 4174–4180.
[59] Y. Du, Y. Sun, Y. Di, L. Zhao, S.H. Liu, F.-S. Xiao, J. Porous Mater. 13 (2006)
163–171.
[60] A.A. Pujari, J.J. Chadbourne, A.J. Ward, L. Costanzo, A.F. Masters, T. Maschmeyer,
New J. Chem. 33 (2009) 1997–2000.
Support from the Australian Research Council is gratefully
acknowledged. L.C. gratefully acknowledges the receipt of a Uni-
versity of Sydney International Scholarship.
[61] T. Maschmeyer, M. Che, Angew. Chem. Int. Ed. 49 (2010) 1536–1539.
References
[62] S. Telalovic´, J.F. Ng, R. Maheswari, A. Ramanathan, G.K. Chuah, U. Hanefeld,
Chem. Commun. (2008) 4631–4633.
[63] M.M. Natile, A. Galenda, A. Glisenti, S. Mascotto, S. Gross, J. Non-Cryst. Solids
355 (2009) 481–487.
[64] C.J. Adams, A.E. Bradley, K.R. Seddon, Aust. J. Chem. 54 (2001) 679–681.
[65] S. Telalovic´, A. Ramanathan, G. Mul, U. Hanefeld, J. Mater. Chem. 20 (2010)
642–658.
[66] A. Clearfield, P.A. Vaughan, Acta Crystallogr. 9 (1956) 555–558.
[67] C. Walther, J. Rothe, M. Fuss, S. Büchner, S. Koltsov, T. Bergmann, Anal. Bioanal.
Chem. 388 (2007) 409–431.
[68] A. Clearfield, G.P.D. Serrette, A.H. Khazi-Syed, Catal. Today 20 (1994) 295–312.
[69] Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A.
Firouzi, B.F. Chmelka, Chem. Mater. 6 (1994) 1176–1191.
[1] J.D. McCullough, K.N. Trueblood, Acta Crystallogr. 12 (1959) 507–511.
[2] G. Teufer, Acta Crystallogr. 15 (1962) 1187.
[3] M. Hino, K. Arata, J. Chem. Soc. Chem. Commun. (1980) 851–852.
[4] I.J. Bear, Aust. J. Chem. 19 (1966) 357–361.
[5] I.J. Bear, Aust. J. Chem. 20 (1967) 415–428.
[6] I.J. Bear, Aust. J. Chem. 22 (1969) 875–889.
[7] I.J. Bear, G.M. Lukaszewski, Aust. J. Chem. 19 (1966) 1973–1975.
[8] I.J. Bear, W.G. Mumme, J. Chem. Soc. Chem. Commun. (1968) 609–611.
[9] I.J. Bear, W.G. Mumme, J. Chem. Soc. Chem. Commun. (1969) 230–232.
[10] I.J. Bear, W.G. Mumme, Spectrochim. Acta A 26 (1970) 755–760.
[11] I.J. Bear, W.G. Mumme, Rev. Pure Appl. Chem. 21 (1971) 189–211.
[12] Y.-L. Fu, Z.-W. Xu, J.-L. Ren, S.W. Ng, Acta Crystallogr. 61E (2005) m1520–m1522.
[13] Z.-W. Xu, Y.-L. Fu, S.-Q. Teng, S.W. Ng, Acta Crystallogr. 62E (2006)
m3420–m3422.
[70] C. Breitkopf, ChemCatChem 1 (2009) 259–269.
[71] F.R. Chen, G. Coudurier, J.-F. Joly, J.C. Vedrine, J. Catal. 143 (1993) 616–626.
[72] R.A. Comelli, C.R. Vera, J.M. Parera, J. Catal. 151 (1995) 96–101.
[73] X. Li, K. Nagaoka, L.J. Simon, R. Olindo, J.A. Lercher, Catal. Lett. 113 (2007) 34–40.
[14] Z.-W. Xu, Y.-L. Fu, S.-Q. Teng, S.W. Ng, Acta Crystallogr. 63E (2006) m140–m142.