Page 3 of 3
Journal Name
ChemComm
DOI: 1C0.O10M39M/CU4CNCI1C0A34T9IOA N
It was concluded that the ratiometric measurement of Mitoꢀ
In conclusion, we have successfully constructed a
RTP could appropriately compensate the focus drift caused by ratiometric fluorescent chemical thermosensor, which
cellular movement and transportation of mitochondria inside specifically localizes to mitochondria in a relatively short time
the cell. As such, MitoꢀRTP generates a temperatureꢀdependent period (< 30 min). We confirmed that MitoꢀRTP could work as
fluorescence change in mitochondria within living HeLa cells.
a thermosensor both in vitro and in living cells. Ratiometric
The utility of MitoꢀRTP as a mitochondrial thermosensor measurement using MitoꢀRTP was able to negate the effects of
was examined by monitoring mitochondrial temperature defocusing along the zꢀaxis caused by cellular movements and
changes induced by external chemical stimuli using HeLa cells. concentration changes in the fluorophore. This novel system
We
applied
carbonyl
cyanide
4ꢀ(trifluoromethoxy) enabled us to visualize the FCCPꢀcoupled temperature
phenylhydrazone (FCCP), which transports protons across the elevation in the mitochondria within HeLa cells. Mitochondrial
mitochondrial inner membrane, to prevent the coupling of ATP thermodynamics plays a key role in cellular activities related to
synthesis and oxidative phosphorylation, leading to heat homeostasis and energy balance. Therefore, MitoꢀRTP is a
generation12, 19, 20, 21. Fluorescence intensities of rhodamine B powerful tool for analyzing how mitochondria activate in living
(Fig. 3A) and CS NIR dye (Fig. 3 B) in MitoꢀRTP were widely cells. We believe this technique will provide information
distributed because each region of interest (ROI) (N = 5 cells, n concerning the relationship between cellular activities and
= 19 ROIs) detected signals from a different focus point. The changes in temperature.
fluorescence intensity ratio, however, showed a gradual
decrease from around 150 seconds after addition of FCCP (Fig.
3C), but was constant for the DMSO control (Fig. 3D). The
observed time lag (t = 0 to 150 s) is thought to be due to the
diffusion time of FCCP, which was added dropwise to the
extracellular buffer. The fluorescence intensity ratio of FCCP
treated cells (t = 330) significantly decreased compared with
We thank Dr. H. Nakamura (Waseda U.), Prof. E. Latz (Bonn
U.) and Dr. G. Horvath (Bonn U.), Prof. S. Ishiwata (Waseda U.), Dr.
K. Oyama (Waseda U.) and Dr. S. Arai (WABIOS) for microscopic
experiments and technical advices. This work was supported by
Waseda U. Grant for Special Research Project and the JSPS Coreꢀtoꢀ
Core Program.
that of the DMSO control cells (t = 330) (
student’s ꢀtest) (Fig. 3E). Fluorescence ratio images (Fig. 3G)
indicated that the heterogeneous temperature elevation in FCCP
treated cells (t = 330) compared with untreated cells (t = ꢀ90) (
=8.1 × 10ꢀ5 by student’s
ꢀtest) (Fig. 3F). Mitochondrial
P
= 3.7 × 10−5 by
t
Notes and references
1
C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F.
Palacio, L. D. Carlos, Nanoscale, 2012, 4, 4799–4829.
T. Ozawa, H. Yoshimura, S. B. Kim, Anal. Chem., 2013, 85, 590–609.
C. Gota, K. Okabe, T. Funatsu, Y. Harada, S. Uchiyama, J. Am. Chem.
Soc. 2009, 131, 2766– 2767.
P
2
3
t
temperature distribution within a cell has already been reported
by the other published works6, 12. Therefore, MitoꢀRTP is
considered to monitor the FCCPꢀcoupled heterogeneous
thermogenesis in mitochondrial.
4
5
6
F. Ye, C. Wu, Y. Jin, Y. ꢀH. Chan, X. Zhang, D. T. Chiu, J. Am. Chem.
Soc. 2011, 133, 8146–8149.
P. J. Wu, S. Y. Kuo, Y. C. Huang, C. P. Chen, Y. H. Chan, Anal. Chem
2014. 86, 4831ꢀ4839.
J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, R. Quidant,
Mapping Intracellular Temperature Using Green Fluorescent Protein.
Nano Lett. 2012, 12, 2107ꢀ2111.
E
C
A
7
8
C. H. Hsia, A. Wuttig, H. Yang. ACS Nano, 2011, 5, 9511–9522.
G. Kucsko, P. C. Maurer, N. Y. Yao, M. D. Lukin, Nature, 2013. 500,
54–58.
9
Y. Takei, S. Arai, A. Murata, S. Takoeka. ACS nano, 2014, 8, 198ꢀ206.
10 K. Oyama, M. Takabayashi, Y. Takei, S. Arai, S. Takeoka, S. Ishiwata,
M. Suzuki, Lab Chip., 2012, 12, 1591–1593.
11 K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, Nat.
Commun., 2012, 3, 1ꢀ9.
B
D
F
12 S. Kiyonaka, T. Kajimoto, R. Sakaguchi, D. Shinmi, M. Omatsuꢀ
Kanbe, H. Matsuura, H. Imamura, T. Yoshizaki, I. Hamachi, T. Morii,
Y. Mori, Nature 2013, 10,1232–1240.
13 S. Arai, S. C. Lee, D. Zhai, M. Suzuki, Y. T. Chang, Scientific Reports,
2014, 4, 1ꢀ6.
14 C. E. EstradaꢀPérez, Y. A. Hassan, S. Tan, Rev. Sci. Instrum. 2011, 82,
074901.
15 L. Yuan, W. Lin, Y. Yang, H. Chen, J. Am. Chem.Soc. 2012, 134,
1200−1211.
16 L. V. Johnson, M. L. Walsh, L. B. Chen, Cell Biology, 1980, 77, 990 –
994
G
High
10 µM
FCCP
17 X. Qian, Y. Xiao, Y. Xu, X. Guo, J. Qiana, W. Zhua, Chem. Commun.,
2010, 46, 6418–6436
Low
18 D. A. Rube, A. M. van der Bliek, Mol.Cell Biol., 2004, 256/257, 331–
339.
Fig. 3 Visualization of mitochondrial temperature in HeLa cells in the
presence of 10 ꢁM FCCP. Time course fluorescence signals of (A)
rhodamine B (average values shown in red) and (B) CS NIR dye
(average values shown in green), (C) fluorescence intensity ratio
(average values shown in black) (N = 5 cells, n = 19 ROIs). (D)
Normalized fluorescence ratio was obtained by applying 0.1% DMSO
as control (average values in black) (n = 12 ROIs). (E) Student’s tꢀtest
of DMSO and FCCP at t = 330s (**P = 3.7 × 10−5). (F) Student’s tꢀtest
19 A. Bartelt, O. T. Bruns, R. Reimer, H. Hohenberg, H. Ittrich, K.
Peldschus, M. G. Kaul, U. I. Tromsdorf, H. Weller, C. Waurisch, A.
Eychmüller, P. L. S. M. Gordts, F. Rinninger, K. Bruegelmann, B.
Freund, P. Nielsen, M. Merkel, J. Heeren, Nature Med., 2011, 17, 200ꢀ
206.
20 M. A. Paulik, R. G. Buckholz, M. E. Lancaster, W. S. Dallas, E. A.
HullꢀRyde, J. E. Weiel, J. M. Lenhard, Pharm. Res., 1998, 15, 944ꢀ
949.
before (t = ꢀ90) and after (t = 330) addition of FCCP (**P = 8.1 × 10−5)
.
(G) Ratio images (rhodamine B/CS NIR dye) before (t = ꢀ90) and after
(t =330) addition of FCCP. Scale bar indicate 10 ꢁm.
21 H. Terada. Biochim. Biophys. Acta., 1981, 639, 225–242.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3