216
G. Berretta, G. D. Coxon / Tetrahedron Letters 53 (2012) 214–216
References and notes
Ph3P Br
COOH
17
1. (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442–
4489; (b) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Org. Process
Res. Dev. 2009, 14, 30–47.
2. (a) Cardenas, D. J. Angew. Chem. Int. Ed. 1999, 38, 3018–3020; (b) Cárdenas, D. J.
Angew. Chem. Int. Ed. 2003, 42, 384–387; (c) Frisch, A. C.; Beller, M. Angew.
Chem. Int. Ed. 2005, 44, 674–688.
1) NaHMDS (2 eq.),
RT
3
1
(0% in THF-DMPU;
8% in THF)
+
3. Valente, C.; Belowich, M. E.; Hadei, N.; Organ, M. G. Eur. J. Org. Chem. 2010,
2010, 4343–4354.
O
2
2) , -84 °C
4. Takayama, K.; Wang, C.; Besra, G. S. Clin. Microbiol. Rev. 2005, 18, 81–101.
5. (a) Glickman, M. S.; Cox, J. S.; Jacobs, W. R. Mol. Cell 2000, 5, 717–727; (b)
Barkan, D.; Liu, Z.; Sacchettini, J. C.; Glickman, M. S. Chem. Biol. 2009, 16, 499–
509.
6. (a) Zhang, Y.; Post-Martens, K.; Denkin, S. Drug Discovery Today 2006, 11, 21–
27; (b) Lamichhane, G. Trends Mol. Med. 2011, 17, 25–33.
7. (a) Guerard, C.; Breard, M.; Courtois, F.; Drujon, T.; Ploux, O. Bioorg. Med. Chem.
Lett. 2004, 14, 1661–1664; (b) Guianvarc’h, D.; Drujon, T.; Leang, T. E.; Courtois,
F.; Ploux, O. Biochim. Biophys. Acta, Proteins Proteomics 2006, 1764, 1381–1388;
(c) Elamin, A. A.; Stehr, M.; Oehlmann, W.; Singh, M. J. Microbiol. Methods 2009,
79, 358–363.
17
2
10
O
COOH
17
P
Ph
(Step 2)
Ph
16 (>50%)
Scheme 5. Synthesis of 1 and unexpected formation of 16.
8. (a) Al Dulayymi, J. R.; Baird, M. S.; Roberts, E. Tetrahedron Lett. 2000, 41, 7107–
7110; (b) Al Dulayymi, J. R.; Baird, M. S.; Roberts, E. Chem. Commun. 2003, 228–
229; (c) Al Dulayymi, J. R.; Baird, M. S.; Roberts, E. Tetrahedron 2005, 61, 11939–
11951; (d) Al Dulayymi, J. R.; Baird, M. S.; Roberts, E.; Minnikin, D. E.
Tetrahedron 2006, 62, 11867–11880; (e) Al-Dulayymi, J. R.; Baird, M. S.;
Mohammed, H.; Roberts, E.; Clegg, W. Tetrahedron 2006, 62, 4851–4862; (f) Al
Dulayymi, J. R.; Baird, M. S.; Roberts, E.; Deysel, M.; Verschoor, J. Tetrahedron
2007, 63, 2571–2592.
9. Garegg, P. J.; Johansson, R.; Ortega, C.; Samuelsson, B. J. Chem. Soc., Perkin Trans.
1 1982, 681–683.
10. Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, E. A. B.; O’Brien, C. J.;
Valente, C. Chem. Eur. J. 2006, 12, 4749–4755.
PCC under mild conditions in the presence of molecular sieves
(MS3Å)19 and sodium acetate in a 91% yield.
Attempts to carry out the Wittig reaction between phospho-
nium bromide 3 and aldehyde 2 in THF/DMPU failed to produce
the desired compound, leading instead to the formation of diph-
enylphosphorylalkylcarboxylic acid 16 as major product (Scheme
5). Gratifyingly, omitting the DMPU from the reaction mixture re-
sulted in the synthesis of compound 1 despite the by-product 16
still being present as the major component under these condi-
tions.20 The conversion of phosphonium salts, containing a long-
11. It has previously been reported that a pendent cyano group may have a
deleterious influence on the alkyl–alkyl Negishi cross-coupling reaction: Zhou,
J. Ph.D. thesis, Massachusetts Institute of Technology, 2005.
chain
x-carboxyalkyl group, into the corresponding phosphoryl
derivatives has been previously reported to take place in the pres-
ence of bases and polar solvents only after several days.21 Con-
versely, preliminary results22 from our studies indicated that this
side-reaction is rapid and may be the principal cause of the low
yields reported23 in Wittig reactions of phosphonium salts with
pendent carboxy groups. Specifically, we suspect that this base-
promoted side-reaction may be due to intramolecular coordination
of the carboxylate group on the phosphonium moiety, where
DMPU has the role to solvate the sodium ion.
12. Commercially available organozinc reagents (Rieke Metals, Inc.) contain 1–
3 wt% chloride salt. Since the organochlorides are less reactive than the
corresponding bromides under these conditions, we believe that the
transhalogenation may affect the formation of the desired product.
13. (a) Kiddle, J. J. Tetrahedron Lett. 2000, 41, 1339–1341; (b) Cvengros, J.; Toma, S.;
Marque, S.; Loupy, A. Can. J. Chem. 2004, 82, 1365–1371; (c) Herrero, M. A.;
Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2008, 73, 36–47.
14. Coxon, G. D.; Douglas, J. D.; Minnikin, D. E. Chem. Phys. Lipids 2003, 126, 49–53.
15. Attempts to use directly the resulting
x-hydroxyalkyl-phosphonium salt in the
Wittig reaction afforded the expected alkenol in poor yields and low Z-
stereoselectivity, as previously reported during similar Wittig reactions with
phosphonium salts bearing a pendent hydroxy group: Ref. 23.
16. Mukhopadhyay, T.; Seebach, D. Helv. Chim. Acta 1982, 65, 385–391.
17. The desired Z-isomer was synthesised in >98% geometrical purity (the Z:E ratio
was determined by 13C NMR analysis).
In conclusion, the first synthesis of cis,cis-diunsaturated a-mer-
omycolic acid has been accomplished using a convergent strategy
using readily available starting materials: 1,12-dodecanediol, 1-
eicosene and 6-cyanohexyl zinc bromide. The Negishi cross-cou-
pling reaction has proved to be a useful transformation for the
synthesis of long-chain fatty acids. Studies on biochemical applica-
tions of compound 1 are in progress and will be published in due
course.
18. Kim, S.; Park, J. H. Tetrahedron Lett. 1987, 28, 439–440.
19. Herscovici, J.; Antonakis, K. J. Chem. Soc., Chem. Commun. 1980, 561–562.
20. All compounds were fully characterised with relevant spectral data and were
in agreement with the expected values. Compound 1 was isolated as pure Z,Z-
isomer: 1H NMR (400 MHz, CDCl3) d 5.35 (m, 4H), 2.35 (t, J = 7.5 Hz, 2H), 2.01
(m, 8H), 1.63 (m, 2H), 1.37–1.18 (m, 76H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR
(101 MHz, CDCl3) d 178.7, 130.1, 130.0, 33.9, 32.1, 29.9, 29.9, 29.8, 29.7, 29.7,
29.7, 29.6, 29.5, 29.5, 29.5, 29.4, 29.2, 27.4, 24.9, 22.9, 14.3. HRMS (ESÀ, m/z):
Calculated for C50H95O2 (MÀH+)À = 727.7338; found 727.7344.
21. Narayanan, K. S.; Berlin, K. D. J. Org. Chem. 1980, 45, 2240–2243.
22. Berretta, G. Ph.D. thesis, University of Strathclyde, 2011.; (b) Berretta, G.;
Coxon, G. D. Unpublished results.
Acknowledgment
This work was supported by the University of Strathclyde
through a Ph.D. studentship to G.B.
23. Maryanoff, B. E.; Reitz, A. B.; Duhl-Emswiler, B. A. J. Am. Chem. Soc. 1985, 107,
217–226.