M. M. Heravi, S. Moghimi / Tetrahedron Letters 53 (2012) 392–394
393
Table 1
References and notes
Reaction of aromatic a-bromoketones, phenyl isothiocyanate and primary amines
1. Zhu, J.; Bienyame, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
2. Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3220.
3. (a) Nagasaki, F.; Yamada, T.; Takahashi, E.; Kitagawa, Y.; Hatano, R. Jpn. Kokai
Tokyo Koho JP 63250371, 1988; Chem. Abstr. 1989, 110, 192810.; (b) Hoelzel,
H.; Creuzburg, D.; Stohr, P.; Dehne, H.; Teller, J.; Kranz, L.; Luthardt, H.;
Roethling, T.; Kaestner, A. Ger. DD 258168, 1988; Chem. Abstr. 1989, 111, 2681g.
4. (a) Ivanov, Y. Y.; Tkachenko, S. E.; Proshin, A. N.; Bachurin, S. O. Biomed. Khim.
2003, 49, 92–95; (b) Baumann, R. J.; Mayer, G. D.; Fite, L. D.; Gill, L. M.; Harrison,
B. L. Chemotherapy 1991, 37, 157–165; (c) Webel, L. M.; Degman, M. B.; Harger,
G. F.; Capps, D. B.; Islip, P. J.; Closier, M. D. J. Med. Chem. 1972, 15, 955–963; (d)
Beyer, H.; Ruhlig, G. Chem. Ber. 1956, 89, 107–114.
Entry
R1
R2
Product
Time (min)
Yielda (%)
1
2
3
4
5
6
H
H
Cl
Cl
Me
Me
C6H5
C6H5CH2
C6H5
C6H5CH2
C6H5
C6H5CH2
4a
4b
4c
4d
4e
4f
9
13
10
7
7
12
79
82
70
65
77
72
a
Isolated yield.
5. Sondhi, S. M.; Singh, N.; Lahoti, A. M.; Bajaj, K.; Kumar, A.; Lazach, O.; Meijer, L.
Bioorg. Med. Chem. 2005, 13, 4291–4299.
6. Bae, S.; Hahn, H. G.; Dai Nam, K. J. Comb. Chem. 2005, 7, 7–9.
7. Kim, D. S.; Jeong, Y. M.; Park, I. K.; Hahn, H. G.; Lee, H. K.; Kwon, S. B.; Jeong, J.
H.; Yang, S. J.; Sohn, U. D.; Park, K. C. Biol. Pharm. Bull. 2007, 30, 180–183.
8. Manaka, A.; Sato, M.; Aoki, M.; Tanaka, M.; Ikeda, T.; Toda, Y.; Yamang, Y.;
Nakaike, S. Bioorg. Med. Chem. Lett. 2001, 11, 1031–1035.
R2
S
HN
N
1
O
Ph
2 +
3
NHR2
PhHN
S
Et3N
9. (a) Hantzsch, A.; Weber, J. H. Chem. Ber. 1887, 20, 3118–3132; (b) Traumann, V.
Liebigs Ann. Chem. 1888, 31–53.
R1
5
10. (a) Vernin, G. In Thiazole and its Derivatives; Metzger, J. V., Ed.; John Wiley and
Sons: New York, NY, 1979. Part 1, Chapter 4; (b) Bramley, S. E.; Dupplin, V.;
Goberdhan, D. G.; Meakins, G. D. J. Chem. Soc., Perkin Trans. 1 1987, 639–644.
11. Balalaie, S.; Nikoo, S.; Haddadi, S. Synth. Commun. 2008, 38, 2521–2528.
12. Kasmi, S.; Hamelin, J.; Benhaoua, H. Tetrahedron Lett. 1998, 39, 8093–8096.
13. Murru, S.; Singh, C. B.; Kavala, V.; Patel, B. K. Tetrahedron 2008, 64, 1931–
1942.
6
Ph
N
R2
-H2O
4
S
N
14. Miloudi, A.; El-Abed, D.; Boyer, G.; Finet, J.; Galy, J.; Siri, D. Eur. J. Org. Chem.
2004, 1509–1516.
HO
15. Tittelbach, F.; Vieth, S.; Schneider, M. Eur. J. Org. Chem. 1998, 515–520.
16. Svetlik, J. J. Org. Chem. 1990, 55, 4740–4744.
7
R1
17. Dhooghe, M.; Waterinckx, A.; De Kimpe, N. J. Org. Chem. 2005, 70, 227–232.
18. Sanemitsu, Y.; Kawamura, S.; Satoh, J.; Katayama, T.; Hashimoto, S. J. Pestic. Sci.
2006, 31, 305–310.
Scheme 2. Plausible mechanism for the formation of thiazole-2-imines.
19. De Kimpe, N.; Boelens, M.; Declereq, J.-P. Tetrahedron 1993, 49, 3411–3424.
20. Ingle, S. T.; Kapley, S. M.; Chande, M. S. Proc. Indian Acad. Sci., Chem. Sci. 1980,
89, 295–301.
21. (a) Wang, X.; Wang, F.; Quan, Z.; Zhang, Z.; Wang, M. Synth. Commun. 2006, 36,
2453–2460; (b) Xia, M.; Lu, Y.-D. Synth. Commun. 2006, 36, 1637–1643; (c)
Manaka, A.; Ishii, T.; Takahashi, K.; Sato, M. Tetrahedron Lett. 2005, 46, 419–422.
22. Saeedi, M.; Heravi, M. M.; Beheshtiha, Y. S.; Oskooie, H. A. Tetrahedron 2010, 66,
5345–5348.
23. Heravi, M. M.; Saeedi, M.; Beheshtiha, Y. S.; Oskooie, H. A. Heterocycles 2011, 83,
535–545.
24. Saeedi, M.; Beheshtiha, Y. S.; Heravi, M. M.; Oskooie, H. A. Heterocycles 2011, 83,
1831–1841.
primary amines 2 and phenyl isothiocyanate 3 in the presence of tri-
ethylamine, which leads to thiazol-2-imines 4 in good to excellent
yields (Scheme 1). 25
As summarized in Table 1, the reactions proceed in short times
and afford pure products in good to excellent yields, without the
need for tedious purification procedures. The structures of the syn-
thesized compounds were fully supported by IR, 1H, and 13C NMR
spectroscopy, mass spectrometry, and elemental analysis. The pre-
viously reported X-ray crystal structure13 of thiazol-2-imine also
confirmed that they have syn stereochemistry due to the steric hin-
drance between the R2 and N-Ph groups.
A proposed mechanism for the reaction is outlined in Scheme 2.
Addition of the primary amine to phenyl isothiocyanate affords
intermediate 5. The carbon of the bromomethyl group of 1 is at-
tacked by sulfur to produce 6, which is facilitated by abstraction
of the NH proton. Cyclization and dehydration result in product
4. The reaction proceeds regioselectively because of the higher
acidity of the NH proton flanked by a phenyl group.
25. General procedure for the synthesis of N-(3,4-diphenylthiazol-2(3H)-
ylidene)phenylamine (4a): To
a mixture of aniline (1 mmol) and phenyl
isothiocyanate (1 mmol) in EtOH (3 ml) under reflux, was added phenacyl
bromide (1 mmol) and Et3N (0.2 mmol). After heating for the time shown in
Table 1 (completion of the reaction was monitored by TLC), the mixture was
cooled and the resulting solid filtered and dried to give 4a as a white powder
without further purification (0.26 g, 79%): mp = 189–192 °C. lit.13 196–197 °C.
IR (KBr) cmꢀ1 1616, 1576, 1486, 1361, 1246, 1141, 766, 696. 1H NMR
:
(500.1 MHz, CDCl3) d: 5.97 (1H, s, @CH), 7.04 (2H, d, J = 7.7, H-Ar), 7.11 (2H, d,
J = 7.1, H-Ar), 7.18–7.24 (4H, m, H-Ar), 7.27–7.28 (3H, m, H-Ar), 7.30–7.38 (4H,
m, H-Ar). 13C NMR (125.7 MHz, CDCl3) d: 97.1, 121.6, 123.2, 127.2, 128.0, 128.6,
128.8, 129.1, 129.8, 130.5, 137.4, 137.9, 139.5, 151.7, 159.9. MS m/z: 328 (M+,
16), 180 (34), 149 (79), 77 (66), 69 (67), 57 (85), 43 (100). Anal. Calcd for
A previous mechanistic study13 suggested that the tertiary hy-
droxyl in the intermediate from ring closure, is protonated prior
to elimination; under our conditions the Et3N (20 mol %) cannot
neutralize all the HBr produced and thus we suggest that acid-cat-
alyzed elimination of water also occurs under our conditions. The
reaction was also studied using one equivalent of Et3N: after cool-
ing the reaction mixture, triethylamine hydrobromide separated
and was dissolved in H2O, however the desired product was ob-
tained in only a low yield.
In conclusion we have described a simple and efficient route for
the synthesis of new thiazol-2-imine derivatives via a one-pot,
three-component reaction. Short reaction times, good to excellent
yields, and the simple experimental procedure are the advantages
of this method in comparison to other routes.
C
21H16N2S: C, 76.80; H, 4.91; N, 8.53. Found: C, 76.75; H, 4.98; N, 8.39.
Compound characterization Data. N-(3-Benzyl-4-phenylthiazol-2(3H)-
ylidene)phenylamine (4b): white powder (0.28 g, 82%): mp = 156–157 °C. IR
(KBr) cmꢀ1 1618, 1583, 1488, 1321, 1234, 1123, 793, 700. 1H NMR
:
(400.2 MHz, CDCl3) d: 5.13 (2H, s, CH2), 5.83 (1H, s, @CH), 7.07–7.14 (5H, m,
H-Ar), 7.25–7.30 (5H, m, H-Ar) 7.36–7.45 (5H, m, H-Ar). 13C NMR (100.6 MHz,
CDCl3) d: 48.5, 95.9, 121.5, 123.0, 127.1, 127.2, 128.3, 128.6, 129.0, 129.1,
129.4, 131.6, 137.5, 140.4, 151.5, 159.9. MS m/z: 342 (M+, 11), 251 (24), 167
(100), 149 (32), 134 (91), 91 (56). Anal. Calcd for C22H18N2S: C, 77.16; H, 5.30;
N, 8.18. Found: C, 77.24; H, 5.23; N, 8.30.
N-[4-(4-Chlorophenyl)-3-phenylthiazol-2(3H)-ylidene]-phenylamine (4c): white
powder (0.25 g, 70%): mp = 277–279 °C. IR (KBr) cmꢀ1: 1606, 1564, 1485, 1349,
1143, 1082, 810, 756, 693.1H NMR (400.2 MHz, CDCl3) d: 6.01 (1H, s, @CH),
7.05–7.10 (5H, m, H-Ar), 7.19–7.21 (2H, d, J = 8.4, H-Ar), 7.28–7.33 (4H, m, H-
Ar), 7.35–7.40 (3H, m, H-Ar). 13C NMR (100.6 MHz, CDCl3) d: 97.9, 121.6, 123.4,
127.8, 128.5, 128.8, 129.1, 129.3, 129.4, 130.0, 134.3, 137.7, 138.8, 151.6, 159.9.
MS m/z: 364 (M+, 37Cl, 9), 362 (M+, 35Cl, 32), 214 (93), 167 (75), 149 (100), 113
(36), 77 (60), 57 (91). Anal. Calcd for C21H15ClN2S: C, 69.51; H, 4.17; N, 7.72.
Found: C, 69.52; H, 4.25; N, 7.63.
N-[3-Benzyl-4-(4-chlorophenyl)thiazol-2(3H)-ylidene]-phenylamine (4d): white
powder (0.24 g, 65%): mp = 154 °C. IR (KBr) cmꢀ1: 1614, 1582, 1486, 1321,
1231, 1125, 1086, 841, 769, 693. 1H NMR (400.2 MHz, CDCl3) d: 5.10 (2H, s,
CH2), 5.83 (1H, s, @CH), 7.08–7.18 (7H, m, H-Ar), 7.24–7.40 (7H, m, H-Ar).
13C NMR (100.6 MHz, CDCl3) d: 48.6, 96.6, 121.5, 123.2, 127.0, 127.2, 128.5,
Acknowledgments
M.M.H. is grateful for partial financial support from Alzahra
University.