K. Aknin et al. / Tetrahedron Letters 53 (2012) 458–461
461
Table 2 (continued)
Compd
R1-
R2-
R3-
R4-
H-
Yielda
O2N
O
11
12
13
14
54
64
55
25
42
O2N
O2N
O2N
O2N
Cl
H-
H-
H-
H-
15
a
Yield of diastereoisomer mixture.
Purified by flash chromatography.
b
Bramlett, D. R.; Miller, T. L.; Tasse, R. P.; Zaleska, M. M.; Moyer, J. A. J. Med.
Chem. 1998, 41, 236; (f) Kinney, W. A.; Lee, N. E.; Garrison, D. T.; Podlesny, E. J.,
Jr.; Simmonds, J. T.; Bramlett, D.; Notvest, R. R.; Kowal, D. M.; Tasse, R. P. J. Med.
Chem. 1992, 35, 4720.
In conclusion, we report the first use of squaric acid as a compo-
nent of the 4C-Ugi reaction. We describe a new, simple, and effi-
cient application to the one-pot direct access to original squaric-
based symmetrical compounds using mild reaction conditions
and a straightforward purification process. The access to squaramic
acids via a ‘mono-4C-Ugi’ reaction is currently under investigation
in our laboratory.
15. Ian Storer, R.; Aciro, C.; Jones, L. H. Chem. Soc. Rev. 2011, 40, 2330.
16. (a) Charton, J.; Charruault, L.; Deprez-Poulain, R.; Deprez, B. Comb. Chem. High
Throughput Screening 2008, 11, 294; (b) Charton, J.; Leroux, F.; Delaroche, S.;
Landry, V.; Déprez, B. P.; Déprez-Poulain, R. F. Bioorg. Med. Chem. Lett. 2008, 18,
4968.
17. Lovering, F.; Kirincich, S.; Wang, W.; Combs, K.; Resnick, L.; Sabalski, J. E.;
Butera, J.; Liu, J.; Parris, K.; Telliez, J. B. Bioorg. Med. Chem. 2009, 17, 3342.
18. (a) Urbahns, K.; Haerter, M.; Albers, M.; Schmidt, D.; Stelte-Ludwig, B.;
Brueggemeier, U.; Vaupel, A.; Keldenich, K.; Lustig, K.; Tsujishita, H.; Gerdes, C.
Bioorg. Med. Chem. Lett. 2007, 17, 6151; (b) McCleland, B. W.; Davis, R. S.;
Palivich, M. R.; Widdowson, K. L.; Werner, M. L.; Burman, M.; Foley, J. J.;
Schmidt, D. B.; Sarau, H. M.; Rogers, M.; Salyers, K. L.; Gorycki, P. D.; Roethke, T.
J.; Stelman, G. J.; Azzarano, L. M.; Ward, K. W.; Bush-Peterson, J. Bioorg. Med.
Chem. Lett. 2007, 17, 1713; (c) Chao, J.; Taveras, A. G.; Chao, J.; Aki, C.; Dwyer,
M.; Yu, Y.; Purukkattle, B.; Rindgen, D.; Jakway, J.; Hipkin, W.; Fosetta, J.; Fan,
X.; Lundell, D.; Fine, J.; Minnicozzi, M.; Philipps, J.; Merritt, J. R. Bioorg. Med.
Chem. Lett. 2007, 17, 3778.
Acknowledgments
We are grateful to the institutions that support our laboratory
(Inserm, Université de Lille2 and Institut Pasteur de Lille, Région
Nord-Pas de Calais, EC).
Supplementary data
19. Gilbert, A. M.; Antane, M. M.; Argentieri, T. M.; Butera, J. A.; Francisco, G. D.;
Freeden, C.; Gundersen, E. G.; Graceffa, R. F.; Herbst, D.; Hirth, B. H.; Lennox, J.
R.; McFarlane, G.; Norton, N. W.; Quagliato, D.; Sheldon, J. H.; Warga, D.;
Wojdan, A.; Woods, M. J. Med. Chem. 2000, 43, 1203.
Supplementary data associated with this article can be found, in
20. Messer, W. S., Jr. Curr. Pharm. Des. 2004, 10, 2015.
References and notes
21. (a) Wei, Z.-L.; Xiao, Y.; Kellar, K. J.; Kozikowski, A. P. Bioorg. Med. Chem. Lett.
2004, 14, 1855; (b) Decker, M.; Fau-Lehmann, J.; Lehmann, J. Curr. Top. Med.
Chem. 2007, 7, 347; (c) Xiao, Q.; Liu, Y.; Qiu, Y.; Yao, Z.; Zhou, G.; Yao, Z.-J.;
Jiang, S. Bioorg. Med. Chem. Lett. 2011, 21, 3613; (d) Zhang, B.; Zhang, T.;
Sromek, A. W.; Scrimale, T.; Bidlack, J. M.; Neumeyer, J. L. Bioorg. Med. Chem.
2011, 19, 2808.
1. Akritopoulou-Zanze, I. Curr. Opin. Chem. Biol. 2008, 12, 324–331.
2. (a) Domling, A. Chem. Rev. 2006, 106, 17; (b) Jida, M.; Soueidan, M.; Willand, N.;
Agbossou-Niedercorn, F.; Pelinski, L.; Laconde, G.; Deprez-Poulain, R.; Deprez,
B. Tetrahedron Lett. 2011, 52, 1705; (c) Jida, M.; Malaquin, S.; Deprez-Poulain,
R.; Laconde, G.; Deprez, B. Tetrahedron Lett. 2010, 51, 5109; (d) Malaquin, S.;
Jida, M.; Gesquiere, J.-C.; Deprez-Poulain, R.; Deprez, B.; Laconde, G.
Tetrahedron Lett. 2010, 51, 2983.
3. Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrückner, C. Angew. Chem. 1959, 71, 386.
4. Ugi, I.; Steinbrückner, C. Chem. Ber. 1961, 94, 2802.
5. Heck, S.; Dömling, A. Synlett 2000, 424.
6. (a) Ugi, I. Angew. Chem. 1960, 72, 639; (b) Nixey, T.; Kelly, M.; Hulme, C.
Tetrahedron Lett. 2000, 41, 8729.
7. Ugi, I.; Rosendhal, F. K.; Bodesheim, F. Liebigs Ann. Chem. 1963, 666.
8. Bossio, R.; Marcaccini, S.; Paoli, P.; Pepino, R.; Polo, C. Synthesis 1991, 999.
9. El Kaim, L.; Grimaud, L. Tetrahedron 2009, 65, 2153.
10. Swartz, L. M.; Howard, L. O. J. Phys. Chem. 1971, 75, 1798.
11. Terao, H.; Sugawara, T.; Kita, Y.; Kaho, E.; Takeda, S. J. Am. Chem. Soc. 2001, 123,
10468.
12. (a) Schmidt, A. H. Synthesis 1980, 961–994; (b) West, R.; Niu, H. Y. J. Am. Chem.
Soc. 1963, 85, 2589.
13. (a) Cohen, S.; Lacher, J. R.; Park, J. D. J. Am. Chem. Soc. 1959, 81, 3480; (b) Park, J.
D.; Cohen, S.; Lacher, J. R. J. Am. Chem. Soc. 1962, 84, 2919; (c) Cohen, S.; Cohen,
S. G. J. Am. Chem. Soc. 1966, 88, 1533.
14. (a) Onaran, M. B.; Comeau, A. B.; Seto, C. T. J. Org. Chem. 2005, 70, 10792; (b) Xu,
Y.; Yamamoto, N.; Ruiz, D. I.; Kubitz, D. S.; Janda, K. D. Bioorg. Med. Chem. Lett.
2005, 15, 4304; (c) Xie, J.; Comeau, A. B.; Seto, C. T. Org. Lett. 2004, 6, 83; (d)
Porter, J. R.; Archibald, S. C.; Childs, K.; Critchley, D.; Head, J. C.; Linsley, J. M.;
Parton, T. A.; Robinson, M. K.; Shock, A.; Taylor, R. J.; Warrellow, G. J.;
Alexander, R. P.; Langham, B. Bioorg. Med. Chem. Lett. 2002, 12, 1051; (e)
Kinney, W. A.; Abou-Gharbia, M.; Garrison, D. T.; Schmid, J.; Kowal, D. M.;
22. El Kaim, L.; Grimaud, L. Mol. Divers. 2010, 14, 855.
23. (a) Thorpe, J. E. J. Chem. Soc. B: Phys. Org. 1968, 435; (b) Rotger, M. C.; Piña, M.
N.; Frontera, A.; Martorell, G.; Ballester, P.; Deyà, P. M.; Costa, A. J. Org. Chem.
2004, 69, 2302.
24. In our case, raising the temperature (up to 80 °C) in the NMR experiments did
not allow coalescence of the signals.
25. Typical procedure for the preparation of symmetrical squaramides (9 as example):
p-toluidine (2 equiv) is added to cyclohexanone (2 equiv) in (1.5 mL) MeOH.
After stirring 45 min at room temperature, squaric acid (0.25 mmol, 1 equiv) in
solution in MeOH (1 mL) is added and the mixture is stirred 5 min. Benzyl
isocyanide (2 equiv) is finally added and the reaction is stirred overnight at
room temperature. The precipitate is filtrated and washed with diethyl ether to
give the desired compound 9 as a white solid (72 mg, 40%). 1H NMR (300 MHz,
DMSO-d6) d 8.62 (br s, 2H, NH), 7.22–7.32 (m, 10H, Har), 7.00–7.08 (m, 8H,
Har), 4.24 (d, J = 5.4 Hz, 4H, 2CH2), 2.29 (br m, 10H, 2 CH3 + 2CH2), 1.85 (br m,
4H, 2CH2), 1.28–1.39 (m, 12H, 6CH2). trLC–MS = 3.70 min. 13C NMR (75 MHz,
DMSO-d6) d 180.9, 171.1, 139.7, 137.8, 136.6, 129.1, 128.6, 127.7, 127.2, 69.9,
43.4, 34.3, 24.4, 22.8, 21.2. Purity 97%. MS (ESI+) m/z = 723 [M+H]+. HRMS:
calcd for C46H50N4O4, (MH+) 723.3910, found 723.3915.
26. Marcaccini, S.; Torroba, T. Nat. Protoc. 2007, 2, 632.
27. In order to verify our hypothesis, we try to obtain compound 14 by pre-forming
the imine in the presence of a dehydrating agent in order to avoid the imine
hydrolysis when adding squaric acid. Unfortunately, the yield could not be
improved by this way.
28. Constabel, F.; Ugi, I. Tetrahedron 2001, 57, 5785.