drops of aqueous ammonia. Yield ¼ 63%; mp 95–104 ꢂC; [a]D25
¼
16 P. Pramod, K. G. Thomas and M. V. George, Chem.–Asian J., 2009,
4, 806–823.
17 T. Nakanishi, K. Ariga, T. Michinobu, K. Yoshida, H. Takahashi,
ꢀ27.0 (c ¼ 0.01, CHCl3); IR (ATR) 3303, 2921, 2851, 1641, 1555,
1
1513 cmꢀ1; H-NMR (500 MHz, CDCl3) d 0.79 (m, 18H), 0.86
€
T. Teranishi, H. Mohwaldand D. G. Kurth, Small, 2007, 3, 2019–2023.
(m, 24H), 1.23 (m, 4H), 1.38 (s, 2H), 1.48 (m, 4H), 1.7 (m, 2H),
2.01 (m, 2H), 2.87 (m, 4H), 3.35 (dd, 2H, J ¼ 5.2, 8.1 Hz), 3.45
(dd, 2H, J ¼ 5.4, 8.2 Hz), 3.61 (t, 4H, J ¼ 6.6 Hz), 6.77 (d, 4H, J
¼ 6.77 Hz), 7.10 (d, 4H, J ¼ 7.10 Hz), 7.53 (s, 2H); 13C-NMR
(125 MHz, CDCl3) d 14.3, 18.0, 19.8, 22.9, 26.3, 29.5, 29.8, 29.9,
31.5, 32.1, 39.6, 53.1, 68.0, 68.3, 114.8, 129.5, 131.7, 158.7, 174.7;
HRMS (ESI-TOF)+ measured for C46H78N4O4 (M + H)+:
751.6101; found 751.6102. Anal. Calcd for C46H78N4O4$H2O: C,
71.93; H, 11.17; N, 6.70; found: C, 71.83; H, 10.98; N, 6.90%. A
small amount of the monoalkylated by-product was also iso-
lated: yield ¼ 5%; mp 78–82 ꢂC; [a]D25 ¼ ꢀ2.5 (c ¼ 0.01, CHCl3);
18 A. Petitjean, L. A. Cuccia, J.-M. Lehn, H. Nierengarten and
M. Schmutz, Angew. Chem., Int. Ed., 2002, 41, 1195–1198.
19 C. A. E. Hauser and S. Zhang, Chem. Soc. Rev., 2010, 39, 2780–2790.
20 A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick,
T. C. B. McLeish, A. N. Semenov and N. Boden, Proc. Natl. Acad.
Sci. U. S. A., 2001, 98, 11857–11862.
21 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294, 1684–
1688.
22 H. Cui, M. J. Webber and S. I. Stupp, Biopolymers, 2010, 94, 1–18.
23 S. I. Stupp, Nano Lett., 2010, 10, 4783–4786.
24 I. Cherny and E. Gazit, Angew. Chem., Int. Ed., 2008, 47, 4062–4069.
25 R. V. Ulijn and A. M. Smith, Chem. Soc. Rev., 2008, 37, 664–675.
26 E. Gazit, Chem. Soc. Rev., 2007, 36, 1263–1269.
27 X. Zhao and S. Zhang, Chem. Soc. Rev., 2006, 35, 1105–1110.
28 S. Zhang, Nat. Biotechnol., 2003, 21, 1171–1178.
IR (ATR) 3299, 2958, 2852, 1631, 1553, 1513, 1467, 1244 cmꢀ1
;
1H-NMR (500 MHz, CDCl3) d 0.81 (d, 6H, J ¼ 6.7 Hz), 0.87 (m,
3H), 0.95 (d, 6H, J ¼ 6.0 Hz), 1.30 (m, 12H), 1.43 (m, 2H), 1.65
(m, 2H), 1.76 (td, 1H, J ¼ 6.6, 13.0 Hz), 2.08 (m, 1H), 2.25 (m,
1H), 2.96 (s, 1H), 3.19 (s, 1H), 3.40 (t, 4H, J ¼ 12.5 Hz), 3.55 (d,
1H, J ¼ 12.8 Hz), 3.69 (d, 1H, J ¼ 11.4 Hz), 3.93 (t, 2H, J ¼ 6.5
Hz), 6.84 (m, 2H), 7.19 (m, 2H), 7.61 (s, 2H), 7.69 (s, 2H); 13C-
NMR (75 MHz, CDCl3) d 14.3, 16.4, 18.1, 19.7, 22.9, 26.3, 29.5,
29.6, 29.8, 31.0, 31.4, 32.1, 39.3, 39.8, 52.9, 60.4, 67.9, 68.3, 114.8,
129.6, 131.4, 158.8, 174.7, 175.1; HRMS (ESI-TOF)+ calcd for
C29H52N4O3 (M + H)+: 505.4118; found 505.4114. Anal. Calcd
for C29H52N4O3: C, 69.01; H, 10.38; N, 11.10; found: C, 68.85;
H, 10.70; N, 11.43%.
ꢀ
ꢀ
29 L. P. Hernandez-Eguıa, R. J. Brea, L. Castedo, P. Ballester and
J. R. Granja, Chem.–Eur. J., 2011, 17, 1220–1229.
30 M. J. Krysmann, V. Castelletto, J. E. McKendrick, L. A. Clifton,
I. W. Hamley, P. J. F. Harris and S. M. King, Langmuir, 2008, 24,
8158–8162.
31 N. Amdursky, M. Molotskii, E. Gazit and G. Rosenman, J. Am.
Chem. Soc., 2010, 132, 15632–15636.
32 J. Berg, J. Tymoczko, L. Stryer and N. D. Clarke, Biochemistry, W.H.
Freeman and Co., 2002.
ꢀ
33 I. Imaz, M. Rubio-Martınez, W. J. Saletra, D. B. Amabilino and
D. Maspoch, J. Am. Chem. Soc., 2009, 131, 18222–18223.
34 R. J. Brea, C. Reiriz and J. R. Granja, Chem. Soc. Rev., 2010, 39,
1448–1456.
35 T. Muraoka, C. Y. Koh, H. Cui and S. I. Stupp, Angew. Chem., Int.
Ed., 2009, 48, 5946–5949.
36 J. N. Shera and X. S. Sun, Biomacromolecules, 2009, 10, 2446–2450.
37 S. Ghosh and S. Verma, Tetrahedron, 2008, 64, 6202–6208.
38 K. Lu, L. Guo, A. K. Mehta, W. S. Childers, S. N. Dublin,
S. Skanthakumar, V. P. Conticello, P. Thiyagarajan,
R. P. Apkarian and D. G. Lynn, Chem. Commun., 2007, 2729–2731.
39 L. S. Birchall, S. Roy, V. Jayawarna, M. Hughes, E. Irvine,
G. T. Okorogheye, N. Saudi, E. de Santis, T. Tuttle, A. A. Edwards
and R. V. Ulijn, Chem. Sci., 2011, 2, 1349–1355.
Acknowledgements
This work was supported by the Spanish Ministry of Science and
Innovation (CTQ2009-14366-C02) and UJI-Bancaixa (P1-1B-
2009-59). J.R. thanks MICINN for personal financial support
(FPU fellowship). The support of the SCIC of the UJI for the
different instrumental techniques is acknowledged.
40 A. Mata, L. Hsu, R. Capito, C. Aparicio, K. Henrikson and
S. I. Stupp, Soft Matter, 2009, 5, 1228–1236.
ꢀ
ꢀ
~
41 E. Torres, J. Puigmartı-Luis, A. Perez Del Pino, R. M. Ortuno and
D. B. Amabilino, Org. Biomol. Chem., 2010, 8, 1661–1665.
ꢀ
42 D.B.AmabilinoandJ.Puigmartı-Luis,SoftMatter, 2010,6, 1605–1612.
ꢀ
Notes and references
~
43 R. Garcıa-Fandino, J. R. Granja, M. D’Abramo and M. Orozco, J.
Am. Chem. Soc., 2009, 131, 15678–15686.
1 Y. Kim, M. F. Mayer and S. C. Zimmerman, Angew. Chem., Int. Ed.,
2003, 42, 1121–1126.
2 Y. Ma, S. V. Kolotuchin and S. C. Zimmerman, J. Am. Chem. Soc.,
2002, 124, 13757–13769.
44 C. s. Reiriz, R. J. Brea, R. o. Arranz, J. L. Carrascosa, A. Garibotti,
B. Manning, J. M. Valpuesta, R. n. Eritja, L. Castedo and
J. R. Granja, J. Am. Chem. Soc., 2009, 131, 11335–11337.
45 G. P. Spada, S. Lena, S. Masiero, S. Pieraccini, M. Surin and
`
3 T. Park and S. C. Zimmerman, J. Am. Chem. Soc., 2006, 128, 11582–
11590.
4 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418–2421.
5 G. M. Whitesides, J. P. Mathias and C. T. Seto, Science, 1991, 254,
P. Samorı, Adv. Mater., 2008, 20, 2433–2438.
46 W. Cai, G. T. Wang, Y. X. Xu, X. K. Jiang and Z. T. Li, J. Am. Chem.
Soc., 2008, 130, 6936–6937.
47 T. Kawasaki, M. Tokuhiro, N. Kimizuka and T. Kunitake, J. Am.
Chem. Soc., 2001, 123, 6792–6800.
48 I. W. Hamley, Soft Matter, 2011, 7, 4122–4138.
49 V. Castelletto and I. W. Hamley, Biophys. Chem., 2009, 141, 169–174.
50 A. Kelarakis, C. Chaibundit, M. J. Krysmann, V. Havredaki,
K. Viras and I. W. Hamley, J. Colloid Interface Sci., 2009, 330, 67–72.
51 H. Cui, E. T. Pashuck, Y. S. Velichko, S. J. Weigand,
A. G. Cheetham, C. J. Newcomb and S. I. Stupp, Science, 2010,
327, 555–559.
1312–1319.
6 J. M. Lehn, Science, 2002, 295, 2400–2403.
7 S. Cavalli, F. Albericio and A. Kros, Chem. Soc. Rev., 2010, 39, 241–
263.
8 D. N. Reinhoudt and M. Crego-Calama, Science, 2002, 295, 2403–
2407.
9 M. Surin, P. G. A. Janssen, R. Lazzaroni, P. Leclere, E. W. Meijer and
A. P. H. J. Schenning, Adv. Mater., 2009, 21, 1126–1130.
10 J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304–1319.
11 J. M. Lehn, Supramolecular Chemistry, Concepts and Perspectives,
Wiley-VCH, Weinheim, 1995.
ꢂ
52 R. J. Williams, A. M. Smith, R. Collins, N. Hodson, A. K. Das and
R. V. Ulijn, Nat. Nanotechnol., 2009, 4, 19–24.
53 S. Ghosh, S. K. Singhand S. Verma, Chem. Commun., 2007, 2296–2298.
54 B. S. Kim, D. J. Hong, J. Bae and M. Lee, J. Am. Chem. Soc., 2005,
127, 16333–16337.
12 E. Gorrea, P. Nolis, E. Torres, E. Da Silva, D. B. Amabilino,
~
V. Branchadell and R. M. Ortuno, Chem.–Eur. J., 2011, 17, 4588–
4597.
ꢀ
55 N. Dıaz, F.-X. Simon, M. Schmutz, M. Rawiso, G. Decher, J. Jestin
ꢀ
13 V. Berl, I. Huc, R. G. Khoury, M. J. Krische and J. M. Lehn, Nature,
2000, 407, 720–723.
14 R. Feynman, Eng. Sci., 1960, 23, 22–36.
and P. J. Mesini, Angew. Chem., Int. Ed., 2005, 44, 3260–3264.
56 H. J. Kim, T. Kim and M. Lee, Acc. Chem. Res., 2011, 44, 72–82.
57 T. B. Schuster, D. De Bruyn Ouboter, E. Bordignon, G. Jeschke and
W. Meier, Soft Matter, 2010, 6, 5596–5604.
€
15 O. Ramstrom, T. Bunyapaiboonsri, S. Lohmann and J. M. Lehn,
Biochim. Biophys. Acta, Gen. Subj., 2002, 1572, 178–186.
This journal is ª The Royal Society of Chemistry 2011
Soft Matter, 2011, 7, 10737–10748 | 10747