Andrea Sartori et al.
COMMUNICATIONS
shi, Chem. Commun. 2007, 2524–2526; d) F. Giacalone,
M. Gruttadauria, P. Lo Meo, S. Riela, R. Noto, Adv.
Synth. Catal. 2008, 350, 2747–2760; e) S. S. V. Ramasas-
try, K. Albertshofer, N. Utsumi, C. F. Barbas III, Org.
Lett. 2008, 10, 1621–1624; f) M.-K. Zhu, X.-Y. Xu, L.-
Z. Gong, Adv. Synth. Catal. 2008, 350, 1390–1396; g) C.
Curti, L. Battistini, F. Zanardi, G. Rassu, V. Zambrano,
L. Pinna, G. Casiraghi, J. Org. Chem. 2010, 75, 8681–
8684; h) S. Pedatella, M. De Nisco, D. Mastroianni, D.
Naviglio, A. Nucci, R. Caputo, Adv. Synth. Catal. 2011,
353, 1443–1446.
Kempf, J. Org. Chem. 2002, 67, 5445–5453; f) B. Dudot,
A. Chiaroni, J. Royer, Tetrahedron Lett. 2000, 41, 6355–
6359, corrigendum 2000, 41, 8667.
[10] G. Casiraghi, F. Zanardi, L. Battistini, G. Rassu, Synlett
2009, 1525–1542.
[11] Ultrasound seems to impact the behaviour of the pres-
ent VMMnR coupling, improving reaction rates, prod-
uct yields, and diastereoselectivity as well (see en-
tries 15 and 16 vs. 17 and 18 in Table 1). This forces us
to assume that the effect of sonication is not merely
mechanical, but involves alteration of the product dis-
tribution. For a seminal review on ultrasound in syn-
thetic organic chemistry, see: T. J. Mason, Chem. Soc.
Rev. 1997, 26, 443–451.
[12] Three-component VMMnR additions to iminium ions
formed in situ from aldehydes and secondary amines
were also investigated under both aqueous and solvent-
free conditions. In the absence of any catalyst, reaction
between 1b, 2a, and N-methylaniline provided the re-
spective addition products in modest yields and re-
duced diastereoselectivities (55% yield, 83:27 dr, and
18% yield, 67:33 dr for aqueous and solvent-free condi-
tions, respectively). In comparison, non-aromatic repre-
sentatives such as morpholine and dibenzylamine
proved totally reluctant to react.
[13] a) J. F. Traverse, A. H. Hoveyda, M. L. Snapper, Org.
Lett. 2003, 5, 3273–3275; b) N. S. Josephsohn, E. L.
Carswell, M. L. Snapper, A. H. Hoveyda, Org. Lett.
2005, 7, 2711–2713; c) J. M. M. Verkade, L. J. C. van
Hermert, P. J. L. M. Quaedflieg, P. L. Alsters, F. L. van
Delft, F. P. J. T. Rutjes, Tetrahedron Lett. 2006, 47,
8109–8113.
[14] a) Organic Reactions in Water: Principles, Strategies
and Applications, 1st edn., (Ed.: U. M. Lindstrçm),
Blackwell Publishing, Oxford, 2007; b) M. C. Pirrung,
K. Das Sarma, J. Wang, J. Org. Chem. 2008, 73, 8723–
8730; c) A. Chanda, V. V. Fokin, Chem. Rev. 2009, 109,
725–748; d) R. N. Butler, A. G. Coyne, Chem. Rev.
2010, 110, 6302–6337.
[15] Due to Z/E geometric equilibration, imines can adopt
syn- or anti-disposed arrangements in the transition
states, and this renders a precise mechanistic rationale
accounting for the observed diastereoselection hard to
formulate. Nevertheless, based on several precedents in
this field, plausible transition states for the present
anti-selective VMMnR of N-arylimines to silyloxypir-
roles are visualized in Figure S1 in the Supporting In-
formation.
[16] As a genuinely green option, products of entries 1, 1’,
2’, 3, 3’, 4’, 9’, and 11 in Table 2 can be isolated directly
by high vacuum treatment of the reaction crudes, thus
avoiding organic solvent intervention. However, for the
data to be consistent, standard protocols involving or-
ganic solvents and chromatography were adopted in all
experiments.
[5] a) C. Loncaric, K. Manabe, S. Kobayashi, Adv. Synth.
Catal. 2003, 345, 1187–1189; b) L. Cheng, X. Wu, Y.
Lu, Org. Biomol. Chem. 2007, 5, 1018–1020; c) Y. Hay-
ashi, T. Urushima, S. Aratake, T. Okano, K. Obi, Org.
Lett. 2008, 10, 21–24; d) R. H. Qiu, S. F. Yin, X. W.
Zhang, J. Xia, X. H. Xu, S. L. Luo, Chem. Commun.
2009, 4759–4761; e) N. Azizi, F. Ebrahimi, M. R. Saidi,
Trans. C: Chem. Chem. Eng. 2009, 16, 94–98, and refer-
ences cited therein.
[6] a) A. Carlone, M. Marigo, C. North, A. Landa, K. A.
Jørgensen, Chem. Commun. 2006, 4928–4930; b) D. Co-
quiꢄre, B. L. Feringa, G. Roelfes, Angew. Chem. 2007,
119, 9468–9471; Angew. Chem. Int. Ed. 2007, 46, 9308–
9311; c) B. Tan, X. F. Zeng, Y. P. Lu, P. J. Chua, G. F.
Zhong, Org. Lett. 2009, 11, 1927–1930; d) Z. L. Zheng,
B. L. Perkins, B. K. Ni, J. Am. Chem. Soc. 2010, 132,
´
50–51; e) M. Rogozinska, A. Adamkiewicz, J. Mlynar-
ski, Green Chem. 2011, 13, 1155–1157.
[7] a) E. Brandes, P. A. Grieco, J. J. Gajewski, J. Org.
Chem. 1989, 54, 515–516; b) A. Lubineau, J. Augꢃ, N.
Bellanger, S. Caillebourdin, J. Chem. Soc. Perkin Trans.
1 1992, 1631–1636; c) M. P. Repasky, C. R. W. Guimar-
aes, J. Chandrasekhar, J. Tirado-Rives, W. L. Jorgensen,
J. Am. Chem. Soc. 2003, 125, 6663–6672; d) O. Aceve-
do, K. Armacost, J. Am. Chem. Soc. 2010, 132, 1966–
1975.
[8] For leading review articles, see: a) G. Casiraghi, F. Za-
nardi, G. Appendino, G. Rassu, Chem. Rev. 2000, 100,
1929–1972; b) S. K. Bur, S. F. Martin, Tetrahedron 2001,
57, 3221–3242; c) S. F. Martin, Acc. Chem. Res. 2002,
35, 895–904; d) G. Casiraghi, L. Battistini, C. Curti, G.
Rassu, F. Zanardi, Chem. Rev. 2011, 111, 3076–3154.
[9] For selected examples on Mukaiyama-type vinylogous
Mannich additions to imines in organic solvents, see:
a) Y. Yang, D. P. Phillips, S. Pan, Tetrahedron Lett.
2011, 52, 1549–1552; b) S.-T. Ruan, J.-M. Luo, Y. Du,
P.-Q. Huang, Org. Lett. 2011, 13, 4938–4941; c) D. M.
Barnes, L. Bhagavatula, J. DeMattei, A. Gupta, D. R.
Hill, S. Manna, M. A. McLaughlin, P. Nichols, R. Pre-
mchandran, M. W. Rasmussen, Z. Tian, S. J. Witten-
berger, Tetrahedron: Asymmetry 2003, 14, 3541–3551;
d) D. M. Barnes, M. A. McLaughlin, T. Oie, M. W. Ras-
mussen, K. D. Stewart, S. J. Wittenberger, Org. Lett.
2002, 4, 1427–1430; e) D. A. DeGoey, H.-J. Chen, W. J.
Flosi, D. J. Grampovnik, C. M. Yeung, L. L. Klein, D. J.
3284
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 3278 – 3284