C. Gargiulli et al. / Tetrahedron Letters 53 (2012) 616–619
619
and 2a (6.2 ꢀ 10ꢁ4 and 2.5 ꢀ 10ꢁ5 sꢁ1 vs 4.0 ꢀ 10ꢁ4 and
1.3 ꢀ 10ꢁ5 sꢁ1, respectively). Similar rate constant comparison be-
tween oxacalix[4]arenes 1a,b and oxacalix[2]arene[2]triazine 2a,b
reveals that the former pair undergoes thermal Z?E isomerization
faster than the latter one. According to this cross-comparison, the
nature of the oxacalixarene framework affects the excited states
involved in the thermal isomerization process of the azobenzene
moieties, with the dinitroaryl rings—more than the chlorotriazine
ones—exerting a stabilizing effect on the E-isomers. This observa-
tion is in agreement with the results obtained from the photoiso-
merization experiments.
In conclusion, we have synthesized the first family of azoben-
zene-containing photoisomerizable oxacalixarenes and investi-
gated their photoinduced and thermal E/Z isomerization.
Additional studies aiming to elucidate the molecular recognition
properties of these and other structurally-related oxacalixarenes,
along with in-depth investigations on their photoswitching behav-
ior, are currently in progress.
10. (a) Reuter, R.; Wegner, H. A. Chem. Commun. 2011, 12267–12276; (b)
Brancatelli, G.; Capici, C.; Gattuso, G.; Geremia, S.; Notti, A.; Pappalardo, S.;
Parisi, M. F.; Sortino, S.; Vittorino, E. Chem.–Asian J., doi: 10.1002/
asia.201100738.; (c) Liu, M.; Yan, X.; Hu, M.; Chen, X.; Zhang, M.; Zheng, B.;
Hu, X.; Shao, S.; Huang, F. Org. Lett. 2010, 12, 2558–2561; (d) Muraoka, T.;
Kinbara, K.; Aida, T. Nature 2006, 440, 512–515; (e) Balzani, V.; Ceroni, P.;
Giansante, C.; Vicinelli, V.; Klärner, F.-G.; Verhaelen, C.; Vögtle, F.; Hahn, U.
Angew. Chem., Int. Ed. 2005, 44, 4574–4578; (f) Balzani, V.; Venturi, M.; Credi, A.
Molecular Devices and Machines-A Journey into the Nanoworld; Wiley-VCH:
Weinheim, 2003; (g) Molecular Switches; Feringa, B. L., Ed.; Wiley-VCH:
Weinheim, 2001; (h) Shinkai, S. In Comprehensive Supramolecular Chemistry;
Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F., Eds.; Pergamon: Oxford,
1996; Vol. 1, p 671.
11. (a) Bandara, H. M. D.; Burdette, S. C. Chem. Soc. Rev., doi: 10.1039/c1cs15179g;
(b) Puntoriero, F.; Ceroni, P.; Balzani, V.; Bergamini, G.; Vögtle, F. J. Am. Chem.
Soc. 2007, 129, 10714–10719; (c) Jousselme, B.; Blanchard, P.; Gallego-Planas,
N.; Delaunay, J.; Allain, M.; Richomme, P.; Levillain, E.; Roncalli, J. J. Am. Chem.
Soc. 2003, 125, 2888–2889; (d) Norikane, Y.; Kitamoto, K.; Tamaoki, N. J. Org.
Chem. 2003, 68, 8291–8304.
12. Capici, C.; Garozzo, D.; Gattuso, G.; Messina, A.; Notti, A.; Parisi, M. F.; Pisagatti,
I.; Pappalardo, S. ARKIVOC 2009, viii, 199–211.
13. Capici, C.; Gattuso, G.; Notti, A.; Parisi, M. F.; Bruno, G.; Nicolò, F.; Pappalardo, S.
Tetrahedron Lett. 2011, 52, 1351–1353.
14. It is worth mentioning that in the case of (E)-2a 1H NMR inspection of the
reaction mixture—before column chromatography—indicated a very high yield
of the cyclic product.
Acknowledgment
15. COSY NMR spectra for 1a,b and 2a,b are reported in the Supplementary data
(Figs. S1–S4).
MIUR (PRIN-2009A5Y3N9 project) is gratefully acknowledged
for the financial support.
16. Spartan’10, Wavefunction, Inc., Irvine, CA. See: Shao, Y.; Molnar, L. F.; Jung, Y.;
Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.;
Levchenko, S. V.; O’Neill, D. P.; DiStasio, Jr., R. A.; Lochan, R. C.; Wang, T.; Beran,
G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt,
A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.;
Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.;
Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.;
Hsu, C.-P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.;
Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y.
M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.;
Woodcock III, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.;
Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer III, H. F.; Kong, J.; Krylov, A. I.; Gilla,
P. M. W.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191.
17. (a) Gattuso, G.; Notti, A.; Parisi, M. F.; Pisagatti, I.; Amato, M. E.; Pappalardo, A.;
Pappalardo, S. Chem.-Eur. J. 2010, 16, 2381–2385; (b) Gargiulli, C.; Gattuso, G.;
Notti, A.; Pappalardo, S.; Parisi, M. F. Supramol. Chem. 2010, 22, 358–364.
18. (a) Yang, Y.; Xue, M.; Chen, C.-F. CrystEngComm 2010, 12, 3502–3505; (b)
Yasukawa, Y.; Kobayashi, K.; Konishi, H. Tetrahedron Lett. 2009, 50, 5130–5134;
(c) Wang, D.-X.; Zheng, Q.-Y.; Wang, Q.-Q.; Wang, M.-X. Angew. Chem., Int. Ed.
2008, 47, 7485–7488; (d) Konishi, H.; Mita, T.; Yasukawa, Y.; Morikawa, O.;
Kobayashi, K. Tetrahedron Lett. 2008, 49, 6831–6834.
19. Irrespective of the conformation adopted, oxacalixarenes 1a,b and 2a,b are
inherently chiral but, because of the absence of suitable probe resonances,
energy barriers for their racemization could not be determined by VT-NMR.
See: Boros, E. E.; Andrews, C. W.; Davis, A. O. J. Org. Chem. 1996, 61, 2553–2555.
and ref. 18b.
20. (a) Bonvalle, P. A.; Mullen, M. R.; Evans, P. J.; Stoltz, K. L.; Story, E. N.
Tetrahedron Lett. 2011, 52, 1117–1120. and references therein.; (b) Consoli, G.
M. L.; Geraci, C.; Neri, P.; Bergamini, G.; Balzani, V. Tetrahedron Lett. 2006, 47,
7809–7813.
Supplementary data
Supplementary data (general experimental methods, synthetic
procedures, COSY NMR spectra and calculated structures for oxaca-
lixarenes 1a,b and 2a,b) associated with this article can be found,
References and notes
1. Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017–7036.
2. Comprehensive Supramolecular Chemistry; Szejtli, J., Osa, T., Eds.; Elsevier:
Oxford, 1996; Vol. 3,.
3. Gutsche, C. D. Calixarenes-An Introduction. In Monographs in Supramolecular
Chemistry; Stoddart, J. F., Ed., second ed.; The Royal Society of Chemistry:
Cambridge, UK, 2008. Vol. 6.
4. (a) For oxa- and azacalixarenes, see: Wang, M.-X. Acc. Chem. Res., doi: 10.1021/
ar200108c; (b) Wang, M.-X. Chem. Commun. 2008, 4541–4551; (c) Maes, W.;
Dehaen, W. Chem. Soc. Rev. 2008, 37, 2393–2402; (d) Parisi, M. F.; Pappalardo, S.
In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A.,
Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford, UK, 2008; Vol. 14, pp 667–
750; (e) König, B.; Fonseca, M. H. Eur. J. Inorg. Chem. 2000, 2303–2310; For
thiacalixarenes, see: (f) Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S.
Chem. Rev. 2006, 106, 5291–5316; (g) Lhoták, P. Eur. J. Org. Chem. 2004, 1675–
1692.
5. Sommer, N.; Staab, H. A. Tetrahedron Lett. 1966, 7, 2837–2841.
6. For some recent examples, of oxa- and azacalixarenes prepared by this
approach, see: (a) Touil, M.; Raimundo, J.-M.; Lachkar, M.; Marsal, P.; Siri, O.
Tetrahedron 2010, 66, 4377–4382; (b) Van Rossom, W.; Kishore, L.; Robeyns, K.;
Van Meervelt, L.; Dehaen, W.; Maes, W. Eur. J. Org. Chem. 2010, 4122–4129; (c)
Haddoub, R.; Touil, M.; Raimundo, J.-M.; Siri, O. Org. Lett. 2010, 12, 2722–2725;
(d) Xue, M.; Chen, C.-F. Org. Lett. 2009, 11, 5294–5297; (e) Katz, J. L.; Geller, B. J.;
Conry, R. R. Org. Lett. 2006, 8, 2755–2758; (f) Konishi, H.; Tanaka, K.; Teshima,
Y.; Mita, T.; Morikawa, O.; Kobayashi, K. Tetrahedron Lett. 2006, 47, 4041–4044;
(g) Katz, J. L.; Feldman, M. B.; Conry, R. R. Org. Lett. 2005, 7, 91–94.
7. Wang, M.-X.; Yang, H.-B. J. Am. Chem. Soc. 2004, 126, 15412–15422.
8. Konishi, H.; Mita, T.; Morikawa, O.; Kobayashi, K. Tetrahedron Lett. 2007, 48,
3029–3032.
21. This assignment was confirmed by comparison with the absorption spectrum
of an oxacalix[4]arene devoid of the azobenzene moiety, composed of
alternating dinitroaryl and resorcinol moieties (see ref. 12).
22. The tetranitro-oxacalix[4]arene framework of compounds 1a,b does not
significantly absorb above 320 nm, and therefore there is no overlap with
the relevant bands of the azobenzene moiety.
23. The E/Z concentration ratios depend on the molar absorption coefficients of the
two isomers at the excitation wavelength employed, as well as on the quantum
yields of the forward and reverse reactions.
24. Thermal Z?E isomerization of diphenyldiazene is a first-order process that
proceeds with an activation energy value close to 24 kcal mol–1 (Ciminelli, C.;
Granucci, G.; Persico, M. Chem.–Eur. J. 2004, 10, 2327–2341).
25. Solvent polarity is a key factor for this thermal process as demonstrated by the
results of Khayer and Sander, (Khayer, K.; Sander, W. J. Bangladesh Acad. Sci.
2008, 32, 111–116). Isomerization of diphenyldiazene in the dark is
accelerated by a factor of 1.2–1.7 as the solvent polarity decreases.
9. (a) Van Rossom, W.; Robeyns, K.; Ovaere, M.; Van Meervelt, L.; Dehaen, W.;
Maes, W. Org. Lett. 2011, 13, 26–129; (b) Van Rossom, W.; Ovaere, M.; Van
Meervelt, L.; Dehaen, W.; Maes, W. Org. Lett. 2009, 11, 1681–1684.