betaines, and Brønsted acids have been succefully devel-
oped for this transformation in recent years.5bÀp However,
most of the substrates, N-protected imines, are unstable,
and aliphatic enolizable aldehyde derived imines are even
hard to isolate, thus resulting in a considerable limitation
to the generality of their applications.6
operational simplicity, the use of PTCs as a tool for the
catalytic asymmetric nitro-Mannich reaction is still rela-
tively undeveloped.
In 2009, we developed a series of quaternary ammonium
salts 1À2 (Figure 1), prepared simply by a reaction of
cinchona alkaloids with 1-chloromethyl benzotriazole,
which exhibits excellent enantioselectivity in the asym-
metric alkylation of glycine imines.8 Herein we report the
highly enantioselective nitro-Mannich reaction between
nitroalkane and R-amido sulfones catalyzed by ammo-
nium salts 1À5 (Figure1). Underthe optimized conditions,
the new catalytic system is valid for both aromatic and
aliphtic aldehyde derivatives, giving excellent enantioselec-
tivities and high yields. More importantly, compared with
the Palomo’s work, we obtained a complete reversal of
enantioselectivity of the products from the nitro-Mannich
reaction by changing the N-benzyl group to a N-benzo-
triazole derivative even using the same chiral source
quinine. As we know, it is very challenging in asymmetric
catalysis to obtain both enantiomers of a given reaction in
excellent enantioselectivity by using the same chiral source.
Subtle modification of the catalyst structure, using the
same chiral source, is an effective method for this purpose.9
Our work added a nice contribution to this area.
Figure 1. Phase-transfer catalysts evaluated.
Table 1. Screening of the Reaction Conditions in Asymmetric
Nitro-Mannich Reaction
Recently, Palomo’s and Herrera’s groups independently
reported the nitro-Mannich reaction between bench stable
R-amido sulfones, which generate reactive N-carbamoyl
imines in situ by inorganic base, and nitromethane using
N-benzyl quininium chloride as a phase-transfer catalyst
(PTC).7 This method successfully expanded the substrate
scope to both aromatic and aliphtic aldehyde derived azo-
methines. Although the phase-transfer catalysis appears
highly attractive considering the mild conditions and the
(5) (a) Okino, T.; Nakamura, S.; Furukawa, T.; Takemoto, Y.
Org. Lett. 2004, 6, 625. (b) Xu, X.; Furukawa, T.; Okino, T.; Miyabe,
H.; Takemoto, Y. Chem.;Eur. J. 2006, 12, 466. (c) Yoon, T. P.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466. (d) Rampala-
kos, C.; Wulff, W. D. Adv. Synth. Catal. 2008, 350, 1785. (e) Bernardi,
L.; Fini, F.; Herrera, R. P.; Ricci, A.; Sgarzani, V. Tetrahedron 2006,
62, 375. (f) Bode, C. M.; Ting, A.; Schaus, S. E. Tetrahedron 2006, 62,
11499. (g) Robak, M. T.; Trincado, M.; Ellman, J. A. J. Am. Chem.
Soc. 2007, 129, 15110. (h) Chang, Y.-W.; Yang, J.-J.; Dang, J.-N.;
Xue, Y.-X. Synlett 2007, 2283. (i) Wang, C.; Zhou, Z.; Tang, C. Org.
Lett. 2008, 10, 1707. (j) Han, B.; Liu, Q.-P.; Li, R.; Tian, X.; Xiong,
X.-F.; Deng, J.-G.; Chen, Y.-C. Chem.;Eur. J. 2008, 14, 8094. (k)
Wang, C.-J.; Dong, X.-Q.; Zhang, Z.-H.; Xue, Z.-Y.; Teng, H.-L. J.
Am. Chem. Soc. 2008, 130, 8606. (l) Rampalakos, C.; Wulff, W. D.
Adv. Synth. Catal. 2008, 350, 1785. (m) Nugent, B. M.; Yoder, R. A.;
Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418. (n) Singh, A.;
Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866. (o) Uraguchi, D.;
Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 10878. (p)
Rueping, M.; Antonchick, A. P. Org. Lett. 2008, 10, 1731.
a All reactions were carried out with 0.1 mmol of R-amido sulfone
and 0.5 mmol of nitromethane in solvent (1 mL) in the presence of
0.01 mmol of catalyst and 0.13 mmol of CsOH H2O as the basic addi-
3
tive, at À50 °C for 24 h. b Isolated yield. c Determined by chiral HPLC
analysis using Chiralpak AD-H column. d The absolute configuration
of the products was assigned by comparison optical rotation and HPLC
result with the literature. e Not determined. f N-Boc benzaldimine was
used instead of R-amido sulfones 6a as substrate. g organic solvent/
H2O = 9:1. h 0.1 mmol of basic additive.
(6) (a) Yang, J. W.; Pan, S. C.; List., B. Org. Synth. 2009, 86, 11.
(b) Petrini, M.; Torregiani, E. Synthesis 2007, 2, 159. (c) Yin, B.; Zhang,
Y.; Xu, L.-W. Synthesis 2010, 21, 3583. (d) Mecozzi, T.; Petrini, M.
Synlett 2000, 73.
ꢀ
(7) (a) Palomo, C.; Oiarbide, M.; Laso, A.; Lopez, R. J. Am. Chem.
ꢀ
ꢀ
Soc. 2005, 127, 17622. (b) Gomez-Bengoa, E.; Linde, A.; Lopez, R.;
ꢀ
Mugica-Mendiola, I.; Oiarbide, M.; Palomo, C. J. Am. Chem. Soc. 2008,
130, 7955. (c) Fini, F.; Sgarzani, V.; Pettersen, D.; Herrera, R. P.;
Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 7975.
(8) He, W.; Wang, Q.-J.; Wang, Q.-F.; Zhang, B.-L.; Sun, X.-L.;
Zhang, S.-Y. Synlett 2009, 1311.
Org. Lett., Vol. 14, No. 3, 2012
705