Table 2 (continued )
Entry 1
Notes and references
1 For selected reviews on sp3 C–H bond activation, see:
(a) K. R. Campos, Chem. Soc. Rev., 2007, 36, 1069; (b) F. Collet,
R. H. Dodd and P. Dauban, Chem. Commun., 2009, 5061;
(c) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (d) C. J. Scheuermann,
Chem.–Asian J., 2010, 5, 436; (e) W.-J. Yoo and C.-J. Li, Top. Curr.
Chem., 2010, 292, 281; (f) C. S. Yeung and V. M. Dong, Chem. Rev.,
2011, 111, 1215.
2 For the recent reports on tetra-alkylammonium iodide catalytic
C–H activation reactions, see: (a) M. Uyanik, H. Okamoto,
T. Yasui and K. Ishihara, Science, 2010, 328, 1376; (b) L. Chen,
E. Shi, Z. J. Liu, S. Chen, W. Wei, H. Li, K. Xu and X. B. Wan,
Chem.–Eur. J., 2011, 17, 4085; (c) M. Uyanik, D. Suzuki, T. Yasui
and K. Ishihara, Angew. Chem., Int. Ed., 2011, 50, 5331; (d) W. Wei,
C. Zhang, Y. Xu and X. B. Wan, Chem. Commun., 2011, 47, 10827;
(e) T. Froehr, C. P. Sindlinger, U. Kloeckner, P. Finkbeiner and
B. J. Nachtsheim, Org. Lett., 2011, 13, 3754; (f) L. Ma, X. Wang,
W. Yu and B. Han, Chem. Commun., 2011, 47, 11333.
2
Time/h Product
Yieldb (%)
15
1a ArQFuyl, 2f
1d ArQFuyl, 2f
10
10
50
56
16
a
Reaction conditions:
1
(0.15 mmol),
2
(0.3 mmol), n-Bu4NI
b
(20 mol%), T-HYDRO (4.0 equiv.), EtOAc (1.0 mL), 40 1C. Isolated
yield. The reaction was carried out at room temperature.
c
3 For selected reviews on hypervalent iodine reagents, see:
(a) R. D. Richardson and T. Wirth, Angew. Chem., Int. Ed., 2006,
45, 4402; (b) V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008,
108, 5299; (c) T. Dohi and Y. Kita, Chem. Commun., 2009, 2073.
4 When we started this study, there was no report for C–N bond
formations with the iodide catalytic system. More recently, Yu and
Han reported an oxidative coupling of aminopyridines with b-keto
esters in the catalysis of TBAI with 20 mol% BF3ÁEt2O as an
additive, which forged the C–N bond with a tertiary amine.
However, in this communication, a C–N bond was formed with
a primary amine. See 2f.
5 A book on cascade reactions: L. F. Tietze, G. Brasche and
K. Gericke, Domino Reactions in Organic Synthesis, Wiley-VCH,
Weinheim, 2006.
6 For selected examples, see: (a) A. S. Kende, K. Kawamura and
R. J. DeVita, J. Am. Chem. Soc., 1990, 112, 4070;
(b) K. C. Nicolaou, M. Bella, D. Y.-K. Chen, X. Huang, T. Ling
and S. A. Snyder, Angew. Chem., Int. Ed., 2002, 41, 3495;
(c) G. Pattenden, N. J. Ashweek, C. A. G. Baker-Glenn,
G. M. Walker and J. G. K. Yee, Angew. Chem., Int. Ed., 2007,
46, 4359.
7 For the recent examples on catalytic synthesis of oxazole derivatives by
metal: (a) E. F. Flegeau, M. E. Popkin and M. F. Greaney, Org. Lett.,
2006, 8, 2495; (b) C. Verrier, T. Martin, C. Hoarau and F. Marsais,
J. Org. Chem., 2008, 73, 7383; (c) F. Besselievre, S. Piguel,
F. Mahuteau-Betzer and D. S. Grierson, Org. Lett., 2008, 10, 4029;
(d) F. Besselievre, F. Mahuteau-Betzer, D. S. Grierson and S. Piguel,
J. Org. Chem., 2008, 73, 3278; (e) E. F. Flegeau, M. E. Popkin and
M. F. Greaney, Org. Lett., 2008, 10, 2717; (f) B. Shi, A. J. Blake,
I. B. Campbell, B. D. Judkins and C. J. Moody, Chem. Commun.,
2009, 3291; (g) K. Lee, C. M. Counceller and J. P. Stambuli,
Org. Lett., 2009, 11, 1457; (h) C. Verrier, C. Hoarau and
F. Marsais, Org. Biomol. Chem., 2009, 7, 647; (i) F. Besselievre and
S. Piguel, Angew. Chem., Int. Ed., 2009, 48, 9553; (j) C. Wan, J. Zhang,
S. Wang, J. Fan and Z. Wang, Org. Lett., 2010, 12, 2338; (k) B. Shi,
A. J. Blake, W. Lewis, I. B. Campbell, B. D. Judkins and C. J. Moody,
J. Org. Chem., 2010, 75, 152; (l) M. Austeri, D. Rix, W. Zeghida and
J. Lacour, Org. Lett., 2011, 13, 1394; (m) W. He, C. Li and L. Zhang,
J. Am. Chem. Soc., 2011, 133, 8482; (n) D. J. Ritson, C. Spiteri and
J. E. Moses, J. Org. Chem., 2011, 76, 3519.
8 Y. Yuan, X. Ji and D. Zhao, Eur. J. Org. Chem., 2010, 5274.
9 S. Yamada, D. Morizono and K. Yamamoto, Tetrahedron Lett.,
1992, 33, 4629.
10 Intermediate 6 was isolated during the reaction of ethyl acetoacetate
1a with benzylamine 2a, and it was identified by 1H NMR,
13C NMR and MS. On the other hand, Ishihara et al. found that
the addition of a catalytic amount of piperidine was effective for
giving a-benzyloxy aldehyde, see 2c. The reason for it may be
that piperidine could react with aldehyde to form the enamine
intermediate.
Scheme 1 Plausible mechanism.
acetoacetate 1a and benzylamine 2a,10 then it reacts with
[n-Bu4N]+[IO2]À 5 to form intermediate 7. Subsequent nucleo-
philic attack of 7 by benzylamine 2a gives 8. Further oxidation
of 8 to 9, then hydrolysis of 9 generates 10, which could
undergo an intra-molecular nucleophilic addition to afford
intermediate 11. Finally, 11 may be oxidized by 4 or 5 to
produce 3a easily.
In summary, we have developed an organocatalytic cascade
reaction to forge C–N, C–O and CQN bonds in one process
via dual sp3 C–H bond activations, which affords a facile
metal-free approach for synthesis of oxazole derivatives. The
presence of water and air does not have any effect to this
protocol. We also proposed the possible mechanistic pathway
on the basis of control experiments. Further studies for the
detailed mechanism and exploration of novel oxidative
coupling reactions with iodide catalytic system are under
way in our laboratory.
We gratefully acknowledge the National Natural Science
Foundation of China (20832001, 20972065, 21074054,
21172106) and the National Basic Research Program of China
(2010CB923303) for their financial support.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 979–981 981