Running title
Chin. J. Chem.
reference, see: (b) Moon, S.-Y.; Jung, S.-H.; Kim, U. B.; Kim, W. S.
2018, 47, 7899-7925. (c) Sato, T.; Yoritate, M.; Tajima, H.; Chida, N.
Total Synthesis of Complex Alkaloids by Nucleophilic Addition to
Amides. Org. Biomol. Chem. 2018, 16, 3864-3875. (d) Kaiser, D.;
Maulide, N. Making the Least Reactive Electrophile the First in Class:
Domino Electrophilic Activation of Amides. J. Org. Chem. 2016, 81,
4421-4428. (e) Pace, V.; Holzer, W.; Olofsson, B. Increasing the
Reactivity of Amides towards Organometallic Reagents: An Overview.
Adv. Synth. Catal. 2014, 356, 3697-3736.
Synthesis of Ketones via Organolithium Addition to Acid Chlorides
Using Continuous Flow Chemistry. RSC Adv. 2015, 5, 79385-79390.
[2] (a) Fukuyama, T.; Tokuyama, H. Palladium-mediated synthesis of
aldehydes and ketones from thiol esters. Aldrichimica Acta 2004, 37,
87–96. (b) Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.;
Liebeskind, L. S. Ambient Temperature Synthesis of High
Enantiopurity N-Protected Peptidyl Ketones by Peptidyl Thiol
Ester-Boronic Acid Cross-Coupling. J. Am. Chem. Soc. 2007, 129,
Am. Chem. Soc. 2016, 138, 7178–7186.
[8] For pioneering work, see: (a) Falmagne, J. B.; Escudero, J.;
Taleb-Saharaoui, S.; Ghosez, L. Cyclobutanone and Cyclobutenone
Derivatives by Reaction of Tertiary Amides with Alkenes or Alkynes.
Angew. Chem., Int. Ed. 1981, 20, 879-880. For selected examples,
see: (b) Movassaghi, M.; Hill, M.; Ahmad, O. K. Direct Synthesis of
Pyridine Derivatives. J. Am. Chem. Soc. 2007, 129, 10096-10097. (c)
Cui, S. L.; Wang, J.; Wang, Y. G. Synthesis of Indoles via Domino
Reaction of N-Aryl Amides and Ethyl Diazoacetate J. Am. Chem. Soc.
2008, 130, 13526-13527. (d) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.;
Huang, P.-Q. Direct, One-pot Sequential Reductive Alkylation of
Lactams/Amides with Grignard and Organolithium Reagents through
Lactam/Amide Activation. Angew. Chem., Int. Ed. 2010, 49,
3037-3040. (e) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. A Direct
Entry to Substituted N-Methoxyamines from N-Methoxyamides via
N-Oxyiminium Ions. Angew. Chem., Int. Ed. 2010, 49, 6369-6372. (f)
Xiao, K.-J.; Wang, A.-E; Huang, P.-Q. Direct Transformation of
Secondary Amides into Secondary Amines: Triflic Anhydride
Activated Reductive Alkylation. Angew. Chem., Int. Ed. 2012, 51,
8314-8317. (g) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.;
Takayama, N.; Sato, T.; Chida, N. Total Synthesis of (±)-Gephyrotoxin
by Amide-Selective Reductive Nucleophilic Addition. Angew. Chem.,
Int. Ed. 2014, 53, 512-516. (h) Peng, B.; Geerdink, D.; Farès, C.;
Maulide, N. Chemoselective Intermolecular a-Arylation of Amides.
Angew. Chem., Int. Ed. 2014, 53, 5462–5466. (i) White, K. L.; Mewald,
M.; Movassaghi, M. Direct Observation of Intermediates Involved in
the Interruption of the Bischler−Napieralski Reaction. J. Org. Chem.
2015, 80, 7403-7411. (j) Romanens, A.; Bélanger, G. Preparation of
[3] Nahm, S.; Weinreb, S. M. N-Methoxy-N-Methylamides as Effective
Acylating Agents. Tetrahedron Lett. 1981, 22, 3815–3818.
[4] For a recent review, see: (a) Lanigan, R. M.; Sheppard, T. D. Eur. J.
Org. Chem. 2013, 7453–7465. For selected examples, see: (b) Tian,
D.-S.; Li, C.-X.; Gu, G.-X.; Peng, H.-N.; Zhang, X.-M.; Tang, W.-J.
Stereospecific Nucleophilic Substitution with Arylboronic Acids as
Nucleophiles in the Presence of a CONH Group Angew. Chem. Int. Ed.
2018, 57, 7176-7180. (c) Wang, Z.-B.; Yin, H.-L.; Fu, G. C. Catalytic
Enantioconvergent Coupling of Secondary and Tertiary Electrophiles
with Olefins. Nature 2018, 563, 379-383. (d) Li, X. W. ; Lin, F. G.;
Huang, K. M.; Wei, J. L.; Li, X. Y.; Wang, X. Y.; Geng, X. Y.; Jiao, N.
Selective a-Oxyamination and Hydroxylation of Aliphatic Amides.
Angew. Chem., Int. Ed. 2017, 56, 12307–12311. (e) Do, H. Q.;
Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu, G. C. Photoinduced,
copper-catalyzed alkylation of amides with unactivated secondary
alkyl halides at room temperature. J. Am. Chem. Soc. 2014, 136,
2162-2167.
[5] For a review, see: Snieckus, V. Chem. Rev. 1990, 90, 879–933. For an
example, see: (b) Lutz, G. P.; Du, H.; Gallagher, D. J.; Beak, P.
Synthetic Applications of the b-Lithiation of b-Aryl Secondary
Amides:ꢀ Diastereoselective and Enantioselective Substitutions. J.
Org. Chem. 1996, 61, 4542-4554.
[6] For reviews, see: (a) Zhu, R.-Y.; Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. A
Simple and Versatile Amide Directing Group for C−H
Functionalizations. Angew. Chem. Int. Ed. 2016, 55, 10578–10599. (b)
Zhu, C.; Wang, R.; Falck, J. R. Amide-Directed Tandem C–C/C–N Bond
Formation through C–H Activation. Chem. -Asian J. 2012, 7,
1502-1514. For selected references, see: (c) Yan, S.-Y.; Han, Y.-Q.;
Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Palladium(II)−Catalyzed
Enantioselective Arylation of Unbiased Methylene C(sp3)−H Bonds
Enabled by a 2−Pyridinylisopropyl Auxiliary and Chiral Phosphoric
Acids. Angew. Chem. Int. Ed. 2018, 57, 9093-9097. (d) Choi, G. J.; Zhu,
Q.-L.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Amide-Directed
Photoredox-Catalysed C–C Bond Formation at Unactivated sp3 C–H
bonds. Nature 2016, 539, 268-271. (e) Yu, D.-G.; Gensch, T.; de
Azambuja, F.; Vásquez-Céspedes, S.; Glorius, F. Co(III)-Catalyzed C–H
Activation/Formal SN-Type Reactions: Selective and Efficient
Cyanation, Halogenation, and Allylation. J. Am. Chem. Soc. 2014, 136,
17722-17725.
Conformationally Restricted b2,2 and b2,2,3-Amino Esters and
-
Derivatives Containing an All-Carbon Quaternary Center. Org. Lett.
2015, 17, 322-325. (k) Katahara, S.; Kobayashi, S.; Fujita, K.;
Matsumoto, T.; Sato, T.; Chida, N. An Iridium-Catalyzed Reductive
Approach to Nitrones from N-Hydroxyamides. J. Am. Chem. Soc.
2016, 138, 5246-5249. (l) Fuentes de Arriba, A. L.; Lenci, E.;
Sonawane, M.; Formery, O.; Dixon, D. J. Iridium-Catalyzed Reductive
Strecker Reaction for Late-Stage Amide and Lactam Cyanation.
Angew. Chem., Int. Ed. 2017, 56, 3655-3659. (m) Fan, T.; Wang, A.; Li,
J.-Q.; Ye, J.-L.; Zheng, X.; Huang, P.-Q. Versatile One-Pot Synthesis of
Polysubstituted Cyclopent-2-enimines from a,b-Unsaturated Amides:
Imino-Nazarov Reaction. Angew. Chem., Int. Ed. 2018, 57,
10352-10356. (n) Trillo, P.; Slagbrand, T.; Adolfsson, H.
Straightforward
a-Amino
Nitrile
Synthesis
Through
Mo(CO)6-Catalyzed Reductive Functionalization of Carboxamides.
Angew. Chem., Int. Ed. 2018, 57, 12347-12351. (o) Ou, W.; Han, F.;
Hu, X.-N.; Chen, H.; Huang, P.-Q. Iridium-Catalyzed Reductive
Alkylations of Secondary Amides. Angew. Chem., Int. Ed. 2018, 57,
11354-11358. (p) Xie, L.-G.; Dixon, D. J. Iridium-Catalyzed Reductive
Ugi-Type Reactions of Tertiary Amides. Nat. Commun. 2018, 9, 2841.
(q) Hiraoka, S.; Matsumoto, T.; Matsuzaka, K.; Sato, T.; Chida, N.
[7] For reviews, see: (a) Huang, P.-Q. Direct Transformations of Amides:
Tactics and Recent Progress. Acta Chim. Sinica 2018, 76, 357-365. (b)
Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Amide Activation:
An Emerging Tool for Chemoselective Synthesis. Chem. Soc. Rev.
Chin. J. Chem. 2019, 37, XXX-XXX
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This article is protected by copyright. All rights reserved.