Page 7 of 9
Journal of the American Chemical Society
rearrangement. J. Am. Chem. Soc. 2016, 138, 5234-5237. (u) Heth-
equivalents. Angew. Chem. Int. Ed. 2012, 51, 204-208. (c)Turnbull,
B. W.; Evans, P. A. Enantioselective rhodium-catalyzed allylic sub-
stitution with a nitrile anion: construction of acyclic quaternary
carbon stereogenic centers. J. Am. Chem. Soc. 2015, 137, 6156-6159.
(9) Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide
solution. Acc. Chem. Res. 1988, 21, 456-463.
(10) Bai, D. C.; Liu, X. Y.; Li, H.;Ding, C. H.; Hou, X. L. Tandem
thorpe reaction/palladium catalyzed asymmetric allylic alkylation:
Access to chiral β-enaminonitriles with excellent enantioselectivity.
Chem.–Asian J. 2017, 12, 212-215.
cox, J. C.; Shockley, S. E.; Stoltz, B. M. Iridium-catalyzed stereoselec-
tive allylic alkylation reactions with crotyl chloride. Angew. Chem.
Int. Ed. 2016, 55, 16092-16095. (v) Krautwald, S.; Sarlah, D.;
Schafroth, M. A.; Carreira, E. M. Enantio-and diastereodivergent
dual catalysis: α-Allylation of branched aldehydes. Science 2013,
340, 1065-1068. (w) Jiang, X.; Boehm, P.; Hartwig, J. F. Stereodiver-
gent allylation of azaaryl acetamides and acetates by synergistic
iridium and copper catalysis. J. Am. Chem. Soc. 2018, 140, 1239-
1242. For selective examples of imine fluorene and esters as pro-
nucleophiles, see: (x) Liu, J.; Cao, C.-G.; Sun, H.-B.; Zhang, X.; Niu, D.
Catalytic asymmetric umpolung allylation of imines. J. Am. Chem.
Soc. 2016, 138, 13103-13106. (y) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang,
X.; Wang, C.-J. Stereodivergent synthesis of α, α-disubstituted α-
amino acids via synergistic Cu/Ir catalysis. J. Am. Chem. Soc. 2018,
140, 1508-1513. (z) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. Ir/Cu
dual catalysis: enantio-and diastereodivergent access to α, α-di-
substituted α-amino acids bearing vicinal stereocenters. J. Am.
Chem. Soc. 2018, 140, 2080-2084.
(4) Selected examples: (a) Graening, T.; Hartwig, J. F. Iridium-
catalyzed regio-and enantioselective allylation of ketone enolates.
J. Am. Chem. Soc. 2005, 127, 17192-17193. (b) Chen, M.; Hartwig, J.
F. Iridium-catalyzed enantioselective allylic substitution of unsta-
bilized enolates derived from α, β-unsaturated ketones. Angew.
Chem. Int. Ed. 2014, 53, 8691-8695. (c) Chen, M.; Hartwig, J. F. Irid-
ium-catalyzed enantioselective allylic substitution of enol silanes
from vinylogous esters and amides. J. Am. Chem. Soc. 2015, 137,
13972-13979. (d) Liang, X.; Wei, K.; Yang, Y.-R. Iridium-catalyzed
enantioselective allylation of silyl enol ethers derived from ketones
and α, β-unsaturated ketones. Chem. Commun. 2015, 51, 17471-
17474. (e) Jiang, X.; Hartwig, J. F. Iridium-catalyzed enantioselec-
tive allylic substitution of aliphatic esters with silyl ketene acetals
as the ester enolates. Angew. Chem. Int. Ed. 2017, 56, 8887-8891.
(5) (a) He, H.; Zheng, X.-J.; Li, Y.; Dai, L.-X.; You, S.-L. Ir-catalyzed
regio-and enantioselective decarboxylative allylic alkylations. Org.
Lett. 2007, 9, 4339-4341. (b) Liu, X.-J.; Jin, S.; Zhang, W.-Y.; Liu, Q.-
Q.; Zheng, C.; You, S.-L. Sequence-dependent stereodivergent allylic
alkylation/fluorination of acyclic ketones. Angew. Chem. Int. Ed.
2020, 59, 2039-2043.
(6) (a) Sempere, Y.; Carreira, E. M. Trimethyl orthoacetate and
ethylene glycol mono-vinyl ether as enolate surrogates in
enantioselective iridium-catalyzed allylation. Angew. Chem. 2018,
130, 7780-7784. (b) Sempere, Y.; Alfke, J. L.; Rössler, S. L.; Carreira,
E. M. Morpholine ketene aminal as amide enolate surrogate in irid-
ium-catalyzed asymmetric allylic alkylation. Angew. Chem. 2019,
131, 9637-9641.
(7) (a) Rappoport, Z. The chemistry of the cyano group, Wiley,
London, 1970. (b) “Supplement C: The Chemistry of Triple-Bonded
Functional Groups, Part 2”: A. J. Fatiadi in The Chemistry of Func-
tional Groups (Eds.: Z. Pappoport, S. Patai), Wiley, London, 1983, p.
1057. (c) Fleming, F. Nitrile-containing natural products. Nat. Pro.
Rep. 1999, 16, 597-606. (d) Greenberg, A.; Breneman, C. M.; Lieb-
man, J. F. The amide linkage: structural significance in chemistry,
bio-chemistry, and materials science. Wiley-Interscience, New
York, 2000. (e) Fleming, F. F.; Wang, Q. Unsaturated nitriles: con-
jugate additions of carbon nucleophiles to a recalcitrant class of ac-
ceptors. Chem. Rev. 2003, 103, 2035-2078. (f) Fleming, F. F.; Yao, L.;
1
2
3
4
5
6
7
8
(11) Selected reviews: (a) Jung, N.; Bräse, S. Vinyl and alkynyl
azides: well-known intermediates in the focus of modern synthetic
methods. Angew. Chem. Int. Ed. 2012, 51, 12169-12171. (b) Hu, B.;
DiMagno, S. G. Reactivities of vinyl azides and their recent
applications in nitrogen heterocycle synthesis. Org. Biomol. Chem.
2015, 13, 3844-3855. (c) Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. α-
Substituted vinyl azides: an emerging functionalized alkene. Chem.
Soc. Rev. 2017, 46, 7208-7228. (d) Hayashi, H.; Kaga, A.; Chiba, S.
Application of vinyl azides in chemical synthesis: A recent update.
J. Org. Chem. 2017, 82, 11981-11989.
(12) (a) Hassner, A.; Ferdinandi, E. S.; Isbister, R. J. Stereochem-
istry. XLVII. Hydrolysis of vinyl azides. Comparison with the
Schmidt reaction. J. Am. Chem. Soc. 1970, 92, 1672-1675. (b) Zhang,
F. L.; Wang, Y. F.; Lonca, G. H.; Zhu, X.; Chiba, S. Amide synthesis by
nucleophilic attack of vinyl azides. Angew. Chem. Int. Ed. 2014, 53,
4390-4394. (c) Zhang, F.-L.; Zhu, X.; Chiba, S. Tf2NH-catalyzed am-
ide synthesis from vinyl azides and alcohols. Org. Lett. 2015, 17,
3138-3141. (d) Zhang, Z.; Kumar, R. K.; Li, G.; Wu, D.; Bi, X.
Synthesis of 4-ynamides and cyclization by the vilsmeier reagent
to dihydrofuran-2 (3-H)-ones. Org. Lett. 2015, 17, 6190-6193. (e)
Lin, C.; Shen, Y.; Huang, B.; Liu, Y.; Cui, S. Synthesis of amides and
nitriles from vinyl azides and p-quinone methides. J. Org. Chem.
2017, 82, 3950-3956. (f) Rasool, F.; Ahmed, A.; Hussain, N.; Yousuf,
S. K.; Mukherjee, D. One-pot regioselective and stereoselective syn-
thesis of C-glycosyl amides from glycals using vinyl azides as gly-
cosyl acceptors. Org. Lett. 2018, 20, 4036-4039.
(13) Selected examples: (a) Hamilton, J. Y.; Sarlah, D.; Carreira, E.
M. Iridium-catalyzed enantioselective allyl–alkene coupling. J. Am.
Chem. Soc. 2014, 136, 3006-3009. (b) Liu, X. J.; Zheng, C.; Yang, Y.
H.; Jin, S.; You, S. L. Iridium-catalyzed asymmetric allylic aromati-
zation reaction. Angew. Chem. Int. Ed. 2019, 58, 10493-10499.
(14) (a) Bartels, B.; Yebra, C. G. a.; Rominger, F.; Helmchen, G.
Iridium-catalysed allylic substitution: stereochemical aspects and
isolation of IrIII complexes related to the catalytic cycle. Eur. J. Inorg.
Chem 2002, 2002, 2569-2586. (b) Bartels, B.; García-Yebra, C.;
Helmchen, G. Asymmetric IrI-catalysed allylic alkylation of mono-
substituted allylic acetates with phosphorus amidites as ligands.
Eur. J. Org. Chem. 2003, 2003, 1097-1103.
(15) A concise synthetic method towards 2-azidoallyl alcohols
was reported by Bi and co-workers: Liu, Z.; Liu, J.; Zhang, L.; Liao,
P.; Song, J.; Bi, X. Silver (I)-catalyzed hydroazidation of ethynyl car-
binols: synthesis of 2-azidoallyl alcohols. Angew. Chem. Int. Ed.
2014, 53, 5305-5309.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) Matsunami, A.; Takizawa, K.; Sugano, S.; Yano, Y.; Sato, H.;
Takeuchi, R. Synthesis of chiral homoallylic nitriles by iridium-cat-
alyzed allylation of cyanoacetates. J. Org. Chem. 2018, 83, 12239-
12246.
Ravikumar, P.;
Funk, L.; Shook, B. C. Nitrile-containing
(17) Chong, Q.; Yue, Z.; Zhang, S.; Ji, C.; Cheng, F.; Zhang, H.; Hong,
X.; Meng, F. N-Heterocyclic carbene–Cu-catalyzed enantioselective
conjugate additions with alkenylboronic esters as nucleophiles.
ACS Catalysis 2017, 7, 5693-5698.
(18) (a) King, D.; Thompson, L. A., III; Shi, J.; Thangathirupathy,
S.; Warrier, J. S.; Islam, I.; Macor, J. E. (Bristol-Myers Squibb Com-
pany, Princeton, NJ, USA). Selective NR2B antagonists. U.S. Pat.
Appl. Pub. US 20150191452 A1, 2015. (b) Thompson, L. A., III; Ma-
cor, J. E. (Bristol-Myers Squibb Company, Princeton, NJ, USA). (R)-
3-((3S,4S)-3-Fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-
methylbenzyl)pyrrolidin-2-one and its prodrugs for the treatment
of psychiatric disorders. U.S. Pat. Appl. Pub. US 20150191496 A1,
pharmaceuticals: efficacious roles of the nitrile pharmacophore. J.
Med. Chem. 2010, 53, 7902-7917. (g) López, R.; Palomo, C.
Cyanoalkylation: alkylnitriles in ctalytic C-C bond-forming
reactions. Angew. Chem. Int. Ed. 2015, 54, 13170-13184. (h) Pitzer,
J.; Steiner, K. Amides in nature and biocatalysis. J. Biotechnol. 2016,
235, 32.
(8) (a) Zhang, K; Peng, Q.; Hou, X. L.; Wu, Y. D. Highly enantiose-
lective palladium-catalyzed alkylation of acyclic amides. Angew.
Chem. Int. Ed. 2008, 47, 1741-1744. (b) Trost. B. M.; Michaelis, D. J.;
Charpentier, J.; Xu, J. Palladium-catalyzed allylic alkylation of car-
boxylic acid derivatives: N-acyloxazolinones as ester enolate
ACS Paragon Plus Environment