Journal of Medicinal Chemistry
Article
drial outer membrane determined by fluorescence spectroscopy. J.
Biochem. Biophys. Methods 2006, 69, 143−150.
fellowship from the Ligue Nationale Contre le Cancer (Equipe
́
Labelisee Ligue 2009). B.J.D. is a consultant for and holds
equity in Aeolus Pharmaceuticals that is commercially
developing metalloporphyrins as human therapeutic agents.
(16) Ban, H. S.; Suzuki, K.; Lim, S. S.; Jung, S. H.; Lee, S.; Ji, J.; Lee,
H. S.; Lee, Y. S.; Shin, K. H.; Ohuchi, K. Inhibition of
lipopolysaccharide-induced expression of inducible nitric oxide
synthase and tumor necrosis factor-alpha by 2′-hydroxychalcone
derivatives in RAW 264.7 cells. Biochem. Pharmacol. 2004, 67,
1549−1557.
ABBREVIATIONS USED
■
AP-1, activator protein-1; ARE, antioxidant response element;
BCRP, breast cancer resistance protein; BSO, L-buthionine
sulfoximine; 2′,5′-DHC, 2′,5′-dihydroxychalcone; α-GAPDH, α-
glyceraldehyde-3-phosphate dehydrogenase; GCLC, glutamate
cysteine ligase catalytic subunit; GCLM, glutamate cysteine
ligase regulatory subunit; GSH, reduced glutathione; HO-1,
heme oxygenase-1; HPLC-EC, HPLC with electrochemical
detection; JNK, c-Jun N-terminal kinase; LDH, lactate
dehydrogenase; MAP, mitogen-activated protein; MnTDE-
1,3-IP5+, manganese(III) meso-tetrakis(N,N′-diethylimidazo-
lium-2-yl)porphyrin; NF-κB, nuclear factor κB; Nrf2, NF-E2-
related factor 2; ROS, reactive oxygen species
(17) Foresti, R.; Hoque, M.; Monti, D.; Green, C. J.; Motterlini, R.
Differential activation of heme oxygenase-1 by chalcones and rosolic
acid in endothelial cells. J. Pharmacol. Exp. Ther. 2005, 312, 686−693.
(18) Abuarqoub, H.; Foresti, R.; Green, C. J.; Motterlini, R. Heme
oxygenase-1 mediates the anti-inflammatory actions of 2′-hydrox-
ychalcone in RAW 264.7 murine macrophages. Am. J. Physiol. Cell
Physiol. 2006, 290, C1092−1099.
(19) Sabzevari, O.; Galati, G.; Moridani, M. Y.; Siraki, A.; O'Brien, P.
J. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.
Chem.-Biol. Interact. 2004, 148, 57−67.
(20) Kachadourian, R.; Day, B. J. Flavonoid-induced glutathione
depletion: Potential implications for cancer treatment. Free Radical
Biol. Med. 2006, 41, 65−76.
(21) Brechbuhl, H. M.; Gould, N.; Kachadourian, R.; Riekhof, W. R.;
Voelker, D, R.; Day, B. J. The breast cancer resistance protein
(ABCG2/BCRP) is a novel glutathione transporter. J. Biol. Chem.
2010, 285, 16582−16587.
(22) Wang, X. J.; Hayes, J. D.; Wolf, C. R. Generation of stable
antioxidant response element-driven reporter gene cell line and its use
to show redox-dependent activation of Nrf2 by cancer chemo-
therapeutic agents. Cancer Res. 2006, 66, 10983−10994.
(23) Bailey, H. H. L-S,R-buthionine sulfoximine: historical develop-
ment and clinical issues. Chem.-Biol. Interact. 1998, 111−112, 239−
254.
(24) Mizuno, K.; Kume, T.; Muto, C.; Takada-Takatori, Y.; Izumi, Y.;
Sugimoto, H.; Akaike, A. Glutathione biosynthesis via activation of the
nuclear factor E2-related factor 2 (Nrf2)-antioxidant-response element
(ARE) pathway is essential for neuroprotective effects of sulforaphane
and 6-(methylsulfinyl) hexyl isothiocyanate. J. Pharmacol. Sci. 2011,
115, 320−328.
(25) Thompson, J. A.; White, C. C.; Cox, D. P.; Chan, J. Y.;
Kavanagh, T. J.; Fausto, N.; Franklin, C. C. Distinct Nrf1/2-
independent mechanisms mediate As 3+-induced glutamate-cysteine
ligase subunit gene expression in murine hepatocytes. Free Radical Biol.
Med. 2009, 46, 1614−1625.
(26) Velmurugan, K.; Alam, J.; McCord, J. M.; Pugazhenthi, S.
Synergistic induction of heme oxygenase-1 by the components of the
antioxidant supplement Protandim. Free Radical Biol. Med. 2009, 46,
430−440.
(27) Bennett, B. L.; Sasaki, D. T.; Murray, B. W.; O'Leary, E. C.;
Sakata, S. T.; Xu, W.; Leisten, J. C.; Motiwala, A.; Pierce, S.; Satoh, Y.;
Bhagwat, S. S.; Manning, A. M.; Anderson, D. W. SP600125, an
anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 13681−13686.
(28) Cuenda, A.; Rouse, J.; Doza, Y. N.; Meier, R.; Cohen, P.;
Gallagher, T. F.; Young, P. R.; Lee, J. C. SB 203580 is a specific
inhibitor of a MAP kinase homologue which is stimulated by cellular
stresses and interleukin-1. FEBS Lett. 1995, 364, 229−233.
(29) Kachadourian, R.; Johnson, C. A.; Min, E.; Spasojevic, I.; Day, B.
J. Flavin-dependent antioxidant properties of a new series of meso-
N,N′-dialkyl-imidazolium substituted manganese(III) porphyrins.
Biochem. Pharmacol. 2004, 67, 77−85.
(30) Fahey, J. W.; Talalay, P. Antioxidant functions of sulforaphane:
A potent inducer of Phase II detoxication enzymes. Food Chem.
Toxicol. 1999, 37, 973−979.
(31) Boumendjel, A.; McLeer-Florin, A.; Champelovier, P.; Allegro,
D.; Muhammad, D.; Souard, F.; Derouazi, M.; Peyrot, V.; Toussaint,
B.; Boutonnat, J. A novel chalcone derivative which acts as a
microtubule depolymerising agent and an inhibitor of P-gp and BCRP
in in-vitro and in-vivo glioblastoma models. BMC Cancer 2009, 9, 242.
REFERENCES
■
(1) Forman, H. J.; Zhang, H.; Rinna, A. Glutathione: Overview of its
protective roles, measurement, and biosynthesis. Mol. Aspects Med.
2009, 30, 1−12.
(2) Lu, S. C. Regulation of glutathione synthesis. Mol. Aspects Med.
2009, 30, 42−59.
(3) Franklin, C. C.; Backos, D. S.; Mohar, I.; White, C. C.; Forman,
H. J.; Kavanagh, T. J. Structure, function, and post-translational
regulation of the catalytic and modifier subunits of glutamate cysteine
ligase. Mol. Aspects Med. 2009, 30, 86−98.
(4) Yuan, L.; Kaplowitz, N. Glutathione in liver diseases and
hepatotoxicity. Mol. Aspects Med. 2009, 30, 29−41.
(5) Gould, N. S.; Day, B. J. Targeting maladaptive glutathione
responses in lung disease. Biochem. Pharmacol. 2011, 81, 187−193.
(6) Waldbaum, S.; Patel, M. Mitochondria, oxidative stress, and
temporal lobe epilepsy. Epilepsy Res. 2010, 88, 23−45.
(7) Backos, D. S.; Fritz, K. S.; Roede, J. R.; Petersen, D. R.; Franklin.,
C. C. Posttranslational modification and regulation of glutamate-
cysteine ligase by the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal.
Free Radical Biol. Med. 2011, 50, 14−26.
(8) Lawrence, N. J.; McGown, A. T. The chemistry and biology of
antimitotic chalcones and related enone systems. Curr. Pharm. Des.
2005, 11, 1679−1693.
(9) Go, M. L.; Wu, X.; Liu, X. L. Chalcones: an update on cytotoxic
and chemoprotective properties. Curr. Med. Chem. 2005, 12, 481−499.
(10) Kumar, V.; Kumar, S.; Hassan, M.; Wu, H.; Thimmulappa, R.
K.; Kumar, A.; Sharma, S. K.; Parmar, V. S.; Biswal, S.; Malhotra, S. V.
Novel chalcone derivatives as potent Nrf2 activators in mice and
human lung epithelial cells. J. Med. Chem. 2011, 54, 4147−4159.
(11) Boumendjel, A.; Boccard, J.; Carrupt, P. A.; Nicolle, E.; Blanc,
M.; Geze, A.; Choisnard, L.; Wouessidjewe, D.; Matera, E. L.;
Dumontet, C. Antimitotic and antiproliferative activities of chalcones:
forward structure-activity relationship. J. Med. Chem. 2008, 51, 2307−
2310.
(12) Cheng, J. H.; Hung, C. F.; Yang, S. C.; Wang, J. P.; Won, S. J.;
Lin, C. N. Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant
activities of 2′,5′-dialkoxylchalcones as cancer chemopreventive agents.
Bioorg. Med. Chem. 2008, 16, 7270−7276.
(13) Nam, N. H.; Kim, Y.; You, Y. J.; Hong, D. H.; Kim, H. M.; Ahn,
B. Z. Cytotoxic 2′,5′-dihydroxychalcones with unexpected antiangio-
genic activity. Eur. J. Med. Chem. 2003, 38, 179−187.
(14) Kachadourian, R.; Pugazhenthi, S.; Velmurugan, K.; Backos, D.
S; Franklin, C. C.; McCord, J. M.; Day, B. J. 2′,5′-Dihydroxychalcone-
induced glutathione is mediated by oxidative stress and kinase
signaling pathways. Free Radical Biol. Med. 2011, 51, 1146−1154.
(15) Tomeckova,
Chavkova, Z.; Perjes
chalcones, dihydrochalcones and some cyclic flavonoids on mitochon-
́
V.; Guzy, J.; Kusnír, J.; Fodor, K.; Marekova,
́
M.;
́
́
i, P. Comparison of the effects of selected
1387
dx.doi.org/10.1021/jm2016073 | J. Med. Chem. 2012, 55, 1382−1388