Journal of the American Chemical Society
Article
(9) An early study reportedthat presence of O2 leads to faster
oxidation of a PdII complex to form a PdIII species: McAuley, A.;
Whitcombe, T. W. Inorg. Chem. 1988, 27, 3090.
(10) Chuang, G. J.; Wang, W.; Lee, E.; Ritter, T. J. Am. Chem. Soc.
2011, 133, 1760.
(11) (a) Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.;
Vedernikov, A. N. Chem. Commun. 2008, 3625. (b) Boisvert, L.;
Denney, M. C.; Kloek, H. S.; Goldberg, K. I. J. Am. Chem. Soc. 2009,
131, 15802.
(12) (a) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.
(b) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846.
(c) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132,
6284.
(13) Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. J. Am. Chem. Soc.
2010, 132, 7303.
(14) Che, C. M.; Li, Z. Y.; Wong, K. Y.; Poon, C. K.; Mak, T. C. W.;
Peng, S. M. Polyhedron 1994, 13, 771.
(15) Drew, D.; Doyle, J. R. Inorg. Synth. 1990, 28, 346.
(16) Meneghetti, S. P.; Lutz, P. J.; Kress, J. Organometallics 2001, 20,
5050.
(17) See the Supporting Information.
(18) Detailed electrochemical studies of these complexes will be
published elsewhere.
consumption of O2 continues even after the complete conversion of
1 (see Supporting Information).
(31) (a) Sawyer, D. T.; Chiericato, G.; Angelis, C. T.; Nanni, E. J.;
Tsuchiya, T. Anal. Chem. 1982, 54, 1720. (b) Anson, F. C.; Shi, C.;
Steiger, B. Acc. Chem. Res. 1997, 30, 437. (c) McCrory, C. C. L.;
Ottenwaelder, X.; Stack, T. D. P.; Chidsey, C. E. D. J. Phys. Chem. A
2007, 111, 12641.
(32) (a) Zhang, J.; Anson, F. C. Electrochim. Acta 1993, 38, 2423.
(b) Lei, Y.; Anson, F. C. Inorg. Chem. 1994, 33, 5003. (c) Lei, Y.;
Anson, F. C. Inorg. Chem. 1995, 34, 1083.
(33) (a) Buettner, G. R. Free Radical Biol. Med. 1987, 3, 259.
(b) Reszka, K.; Chignell, C. F. Free Radical Res. Commun. 1991, 14, 97.
(34) (a) Hamilton, D. E.; Drago, R. S.; Telser, J. J. Am. Chem. Soc.
1984, 106, 5353. (b) Furutachi, H.; Fujinami, S.; Suzuki, M.; Okawa,
H. J. Chem. Soc., Dalton Trans. 2000, 2761.
(35) Lamour, E.; Routier, S.; Bernier, J.-L.; Catteau, J.-P.; Bailly, C.;
Vezin, H. J. Am. Chem. Soc. 1999, 121, 1862.
(36) The detailed reactivity studies of these complexes will be
published elsewhere.
(37) (a) Matsui, T.; Nagano, S.; Ishimori, K.; Watanabe, Y.;
Morishima, I. Biochemistry 1996, 35, 13118. (b) Matsui, T.; Ozaki, S.-
I.; Watanabe, Y. J. Am. Chem. Soc. 1999, 121, 9952. (c) Coggins, M. K.;
Kovacs, J. A. J. Am. Chem. Soc. 2011, 133, 12470.
(38) Yamazaki, I.; Piette, L. H. J. Biol. Chem. 1990, 265, 13589.
(39) (a) Canty, A. J.; Jin, H.; Roberts, A. S.; Skelton, B. W.; White, A.
H. Organometallics 1996, 15, 5713. (b) Oloo, W.; Zavalij, P. Y.; Zhang,
J.; Khaskin, E.; Vedernikov, A. N. J. Am. Chem. Soc. 2010, 132, 14400.
(40) Alsters, P. L.; Teunissen, H. T.; Boersma, J.; Spek, A. L.; van
Koten, G. Organometallics 1993, 12, 4691.
(19) Sarneski, J. E.; McPhail, A. T.; Onan, K. D.; Erickson, L. E.;
Reilley, C. N. J. Am. Chem. Soc. 1977, 99, 7376.
(20) Wieghardt, K.; Koeppen, M.; Swiridoff, W.; Weiss, J. J. Chem.
Soc., Dalton Trans. 1983, 1869.
(21) Rostovtsev, V. V.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E.
Inorg. Chem. 2002, 41, 3608.
(41) Consumption of slightly more than 0.5 equivalent of cumene
hydroperoxide after 8 h may be due to slow decomposition of cumene
hydroperoxide in the presence of 3 (see Supporting Information).
(42) (a) Rebbert, R. E.; Ausloos, P. J. Phys. Chem. 1962, 66, 2253.
(b) Lyon, R. K.; Levy, D. H. J. Am. Chem. Soc. 1961, 83, 4290.
(43) (a) Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J.
Chem. Soc., Chem. Commun. 1986, 1722. (b) Byers, P. K.; Canty, A. J.;
Crespo, M.; Puddephatt, R. J.; Scott, J. D. Organometallics 1988, 7,
1363.
(44) Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem.
Soc., Chem. Commun. 1987, 1093.
(45) (a) Seligson, A. L.; Trogler, W. C. J. Am. Chem. Soc. 1992, 114,
7085. (b) Johansson, L.; Ryan, O. B.; Romming, C.; Tilset, M.
Organometallics 1998, 17, 3957.
(22) (a) Blake, A. J.; Gordon, L. M.; Holder, A. J.; Hyde, T. I.; Reid,
G.; Schroder, M. J. Chem. Soc., Chem. Commun. 1988, 1452. (b) Blake,
̈
A. J.; Holder, A. J.; Roberts, Y. V.; Lavery, A. J.; Schroder, M. J.
̈
Organomet. Chem. 1987, 323, 261.
(23) Stephen, E.; Huang, D.; Shaw, J. L.; Blake, A. J.; Collison, D.;
Davies, E. S.; Edge, R.; Howard, J. A. K.; McInnes, E. J. L.; Wilson, C.;
Wolowska, J.; McMaster, J.; Schroder, M. Chem.Eur. J. 2011, 17,
̈
10246.
(24) (a) Prokopchuk, E. M.; Jenkins, H. A.; Puddephatt, R. J.
Organometallics 1999, 18, 2861. (b) Prokopchuk, E. M.; Puddephatt,
R. J. Can. J. Chem. 2003, 81, 476.
(25) (a) Vedernikov, A. N.; Binfield, S. A.; Zavalij, P. Y.;
Khusnutdinova, J. R. J. Am. Chem. Soc. 2006, 128, 82. (b) Khusnutdi-
nova, J. R.; Zavalij, P. Y.; Vedernikov, A. N. Organometallics 2007, 26,
2402.
(26) The ratio of 3 to ethane remains close to 2:1 at the initial period
of reaction and slightly decreases with time, presumably due to slow
decomposition of 3 (Table S1).
(27) (a) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J.
Am. Chem. Soc. 2001, 123, 7188. (b) Konnick, M. M.; Guzei, I. A.;
Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 10212. (c) Sigman, M. S.;
Jensen, D. R. Acc. Chem. Res. 2006, 39, 221. (d) Cai, X.-C.; Majumdar,
S.; Fortman, G. C.; Cazin, C. S. J.; Slawin, A. M. Z.; Lhermitte, C.;
Prabhakar, R.; Germain, M. E.; Palluccio, T.; Nolan, S. P.; Rybak-
Akimova, E. V.; Temprado, M.; Captain, B.; Hoff, C. D. J. Am. Chem.
Soc. 2011, 133, 1290.
(28) (a) Pieri, G.; Pasquali, M.; Leoni, P.; Englert, U. J. Organomet.
Chem. 1995, 491, 27. (b) Dura-Vila, V.; Mingos, D. M. P.; Vilar, R.;
White, A. J. P.; Williams, D. J. Chem. Commun. 2000, 1525.
(c) Huacuja, R.; Graham, D. J.; Fafard, C. M.; Chen, C.-H.;
Foxman, B. M.; Herbert, D. E.; Alliger, G.; Thomas, C. M.; Ozerov,
O. V. J. Am. Chem. Soc. 2011, 133, 3820. (d) Denney, M. C.; Smythe,
N. A.; Cetto, K. L.; Kemp, R. A.; Goldberg, K. I. J. Am. Chem. Soc.
2006, 128, 2508.
(46) Aye, T.-K.; Canty, A. J.; Crespo, M.; Puddephatt, R. J.; Scott, J.
D.; Watson, A. A. Organometallics 1989, 8, 1518.
(47) Klein, A.; Dogan, A.; Feth, M.; Bertagnolli, H. Inorg. Chim. Acta
2003, 343, 189.
(48) (a) Yang, G.; Miao, R.; Li, Y.; Hong, J.; Zhao, C.; Guo, Z.; Zhu,
L. Dalton Trans. 2005, 1613. (b) Cao, L.; Jennings, M. C.; Puddephatt,
R. J. Dalton Trans. 2009, 5171.
(49) (a) Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc., Dalton
Trans. 1976, 993. (b) Grushin, V. V.; Bensimon, C.; Alper, H.
Organometallics 1993, 12, 2737. (c) Fulton, J. R.; Holland, A. W.; Fox,
D. J.; Bergman, R. G. Acc. Chem. Res. 2002, 35, 44. (d) Bercaw, J. E.;
Hazari, N.; Labinger, J. A.; Oblad, P. F. Angew. Chem., Int. Ed. 2008,
47, 9941. (e) Williams, T. J.; Caffyn, A. J. M.; Hazari, N.; Oblad, P. F.;
Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2008, 130, 2418.
(50) Remy, M. S.; Cundari, T. R.; Sanford, M. S. Organometallics
2010, 29, 1522.
(51) (a) Feng, Y.; Lail, M.; Barakat, K. A.; Cundari, T. R.; Gunnoe, T.
B.; Petersen, J. L. J. Am. Chem. Soc. 2005, 127, 14174. (b) Tenn, W. J.;
Young, K. J. H.; Bhalla, G.; Oxgaard, J.; Goddard, W. A.; Periana, R. A.
J. Am. Chem. Soc. 2005, 127, 14172. (c) Tenn, W. J.; Young, K. J. H.;
Oxgaard, J.; Nielsen, R. J.; Goddard, W. A.; Periana, R. A.
Organometallics 2006, 25, 5173. (d) Kloek, S. M.; Heinekey, D. M.;
Goldberg, K. I. Angew. Chem., Int. Ed. 2007, 46, 4736. (e) Hanson, S.
K.; Heinekey, D. M.; Goldberg, K. I. Organometallics 2008, 27, 1454.
(52) (a) Maitra, A. M. Appl. Catal., A 1993, 104, 11. (b) Liu, S.; Tan,
X.; Li, K.; Hughes, R. Cat. Rev.: Sci. Eng. 2001, 43, 147.
(29) (a) Bianchi, D.; Bortolo, R.; D’Aloisio, R.; Ricci, M. Angew.
Chem., Int. Ed. 1999, 38, 706. (b) Bianchi, D.; Bortolo, R.; D’Aloisio,
R.; Ricci, M. J. Mol. Catal. A: Chem. 1999, 150, 87.
(30) The formation of H2O2 catalyzed by PdII cannot be excluded at
the later stages of the reaction, as volumetric measurements indicate
that after initial absorption of 0.3−0.5 equiv of O2, a slower
2422
dx.doi.org/10.1021/ja210841f | J. Am. Chem.Soc. 2012, 134, 2414−2422