10.1002/anie.201802748
Angewandte Chemie International Edition
COMMUNICATION
Waldvogel,
Angew.
Chem.
Int.
Ed.
2018,
DOI:10.1002/anie.201712718; b) Z.-W. Hou, Z.-Y. Mao, Y.
Y. Melcamu, X. Lu, H.-C. Xu, Angew. Chem. Int. Ed. 2018,
57, 1636-1639; c) S. R. Waldvogel, A. Wiebe, S. Lips, D.
Schollmeyer, R. Franke, Angew. Chem. In. Ed. 2017, 56,
14727-14731; d) T. Gieshoff, A. Kehl, D. Schollmeyer, K.
D. Moeller, S. R. Waldvogel, Chem. Commun. 2017, 53,
2974-2977; e) E. J. Horn, B. R. Rosen, Y. Chen, J. Tang,
K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533,
77-81; f) A. Wiebe, D. Schollmeyer, K. M. Dyballa, R.
Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2016, 55,
11801-11805; g) A. G. O'Brien, A. Maruyama, Y. Inokuma,
M. Fujita, P. S. Baran, D. G. Blackmond, Angew. Chem.
Int. Ed. 2014, 53, 11868-11871; h) B. Elsler, D.
Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2014, 53, 5210-5213; i) A. Kirste, B.
Elsler, G. Schnakenburg, S. R. Waldvogel, J. Am. Chem.
Soc. 2012, 134, 3571-3576, and references cited therein.
a) Q.-L. Yang, Y.-Q. Li, C. Ma, P. Fang, X.-J. Zhang, T.-S.
Mei, J. Am. Chem. Soc. 2017, 139, 3293-3298; b) A.
Shrestha, M. Lee, A. L. Dunn, M. S. Sanford, Org. Lett.
2018, 20, 204-207; c) C. Ma, C.-Q. Zhao, Y.-Q. Li, L.-P.
Zhang, X.-T. Xu, K. Zhang, T.-S. Mei, Chem. Commun.
2017, 53, 12189-12192; d) Y.-Q. Li, Q.-L. Yang, P. Fang,
T.-S. Mei, D. Zhang, Org. Lett. 2017, 19, 2905-2908; e) M.
Konishi, K. Tsuchida, K. Sano, T. Kochi, F. Kakiuchi, J.
Org. Chem. 2017, 82, 8716-8724; f) F. Saito, H. Aiso, T.
Kochi, F. Kakiuchi, Organometallics 2014, 33, 6704-6707;
g) H. Aiso, T. Kochi, H. Mutsutani, T. Tanabe, S.
Nishiyama, F. Kakiuchi, J. Org. Chem. 2012, 77, 7718-
7724; h) F. Kakiuchi, T. Kochi, H. Mutsutani, N. Kobayashi,
S. Urano, M. Sato, S. Nishiyama, T. Tanabe, J. Am. Chem.
Soc. 2009, 131, 11310-11311; i) C. Amatore, C.
Cammoun, A. Jutand, Adv. Synth. Catal. 2007, 349, 292-
296. Recent examples of remote C–H functionalizations: j)
A. Maji, S. Guin, S. Feng, A. Dahiya, V. K. Singh, P. Liu, D.
Maiti, Angew. Chem. Int. Ed. 2017, 56, 14903-14907; k) S.
Bag, R. Jayarajan, U. Dutta, R. Chowdhury, R. Mondal, D.
Maiti, Angew. Chem. Int. Ed. 2017, 56, 12538-12542; l) R.
Y. Tang, G. Li, J.-Q. Yu, Nature 2014, 507, 215-220; m) N.
Hofmann, L. Ackermann, J. Am. Chem. Soc. 2013, 135,
5877-5884, and cited references.
[3]
Scheme 5. Proposed catalytic cycle.
In conclusion, we have reported on the first electrocatalytic
organometallic C–H activation with weakly O-coordinating
groups. Thus, a versatile ruthenium(II) carboxylate catalyst
enabled C–H/O–H alkyne annulations by synthetically
meaningful benzoic acids with ample scope. The C–H activation
employed electricity as the only oxidant and generated hydrogen
as the sole byproduct. Mechanistic studies provided strong
support for a fast organometallic C–H ruthenation and an
efficient electrooxidation of the key ruthenium(0) intermediate by
environmentally-benign electricity.
[4]
Selected reviews: a) P. Gandeepan, L. Ackermann, Chem
2018, 4, 199-222; b) Y. Wei, P. Hu, M. Zhang, W. Su,
Chem. Rev. 2017, 117, 8864-8907; c) Q.-Z. Zheng, N.
Jiao, Chem. Soc. Rev. 2016, 45, 4590-4627; d) B. Ye, N.
Cramer, Acc. Chem. Res. 2015, 48, 1308-1318; e) J.
Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-375;
f) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013,
52, 11726-11743; g) P. Sehnal, R. J. K. Taylor, I. J. S.
Fairlamb, Chem. Rev. 2010, 110, 824-889; h) O. Daugulis,
H. Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42,
1074-1086; i) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu,
Angew. Chem. Int. Ed. 2009, 48, 5094-5115; j) L.
Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int.
Ed. 2009, 48, 9792-9826, and references cited therein.
a) N. Sauermann, R. Mei, L. Ackermann, Angew. Chem.
Int. Ed. 2018, 57, DOI: 10.1002/anie.201802206; b) S.
Tang, D. Wang, Y. Liu, L. Zeng, A. Lei, Nature Commun.
2018, 9, 798; c) C. Tian, L. Massignan, T. H. Meyer, L.
Ackermann, Angew. Chem. Int. Ed. 2018, 57, 2383-2387;
d) N. Sauermann, T. H. Meyer, C. Tian, L. Ackermann, J.
Am. Chem. Soc. 2017, 139, 18452-18455.
Acknowledgements
Generous support by the DFG (Gottfried-Wilhelm-Leibniz award),
SGL Carbon, and the CSC (fellowship to C.T.) is gratefully
acknowledged.
Keywords: C–H activation • alkyne annulation •
electrochemistry • electrocatalysis • mechanism • ruthenium
[1]
Recent reviews: a) S. R. Waldvogel, S. Möhle, M. Zirbes,
E. Rodrigo, T. Gieshoff, A. Wiebe, Angew. Chem. Int. Ed.
2018, DOI: 10.1002/anie.201712732; b) K.-J. Jiao, C.-Q.
Zhao, P. Fang, T.-S. Mei, Tetrahedron Lett. 2017, 58, 797-
802; c) Z.-W. Hou, Z.-Y. Mao, H.-C. Xu, Synlett 2017, 28,
1867-1872; d) M. Yan, Y. Kawamata, P. S. Baran, Chem.
Rev. 2017, 117, 13230-13319; e) S. R. Waldvogel, M. Selt,
Angew. Chem. Int. Ed. 2016, 55, 12578-12580; f) E. J.
Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2,
302-308; g) A. Badalyan, S. S. Stahl, Nature 2016, 535,
406-410; h) B. H. Nguyen, A. Redden, K. D. Moeller,
Green Chem. 2014, 16, 69-72; i) R. Francke, R. D. Little,
Chem. Soc. Rev. 2014, 43, 2492-2521; j) S. R. Waldvogel,
B. Janza, Angew. Chem. Int. Ed. 2014, 53, 7122-7123,
and refernces cited therein.
[5]
[6]
[7]
L. Ackermann, Synlett 2007, 507-526.
a) S. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann,
Adv. Synth. Catal. 2014, 356, 1461-1479; b) K. M. Engle,
T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45,
788-802.
Reviews: a) P. Nareddy, F. Jordan, M. Szostak, ACS
Catal. 2017, 5721-5745; b) M. Jeganmohan, R.
Manikandan, Chem. Commun. 2017, 53, 8931-8947; c) P.
B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012,
[8]
[2]
For representative examples of metal-free innate reactivity,
see: a) S. B. Beil, T. Müller, S. B. Sillart, P. Franzmann, A.
Bomm, M. Holtkamp, U. Karst, W. Schade, S. R.
This article is protected by copyright. All rights reserved.