a
Table 1 E1/2a values (V vs. SCE) and Ep (for irreversible processes) for
characteristic signal above 100 mT16 and Mn(III) complex detected
in parallel mode with a signal below 100 mT. We also note an
increase in free Mn(II) content. Taken together these results agree
with the formation of a Mn(III) complex upon electolysis that
further chemically reacts, likely by dismutation, as supported by
the irreversibility of the wave observed in the cyclic voltammetry.
We have reported here on the functionalisation of the second
coordination sphere of a manganese complex. We have shown
that the presence of an imidazolium group in hydrogen bonding
interaction with a manganese bound water molecule shifts the
redox potential to more positive values. The irreversible nature
of the one electron oxidised species leading to the Mn(III) species
was explained by a dismutation reaction. Further efforts to design
more robust manganese based systems introducing at the same
time a second coordination sphere to understand the initial steps
of water activation are going on in our laboratory.
complexes [3](ClO4)2 and [4](PF6) in acetonitrile (0.1 M Bu4NPF6) and
related complexes
III
II
IV
III
Mn /Mn
Mn /Mn
E
1/2(DEp/mV)
E1/2(DEp/mV)
[3]2+
1.1 (irr)
—
—
[4]+
0.50 (196)
[2a]+
[2b]+
[2aH]2+
-0.35 (117)a
0.10 (96)b
0.82 (117)a
1.1 (96)b
0.32 (~200)a,c
a ref. 5; b ref. 13, c [2aH]2+ stands for the aqua form of [2a]+ in which the
hydroxo ligand is protonated.
For compound [3]2+, we observed one irreversible anodic process
at ca. 1.1 V vs. SCE. This value is close to the one reported in the
case of [LN5Mn(II)(OH2)]2+ complex (Ep = 1. 4 V vs. SCE) where
a
LN5 stands for a pentadentate nitrogen containing ligand.14 In the
present case, the destabilisation of the Mn(III) oxidation state,
contrary to the previously reported Mn(III)-aqua complex [2c]+
agrees with the decrease of the donating power of the phenolate
group. The irreversibility of the process is characteristic of an EC
mechanism15 as reported for complex [LN5Mn(II)(OH2)]2+14 this
irreversibility is attributed to arise from the deprotonation of a
bound water molecule upon oxidation.
Acknowledgements
This work was supported by ANR Take Care and the EU/Energy
SOLAR-H2 project (FP7 contract 212508).
References
1 (a) S. D. Kinzie, M. Thevis, K. Ngo, J. Whitelegge, J. A. Loo and M.
Abu-Omar, J. Am. Chem. Soc., 2003, 125, 4710; (b) K. M. Lancaster,
S. Sproules, J. H. Palmer, J. H. Richards and H. B. Gray, J. Am. Chem.
Soc., 2010, 132, 14590.
2 (a) S. Y. Liu and D. G. Nocera, J. Am. Chem. Soc., 2005, 127, 5278;
(b) C. J. Chang, M. C. Y. Chang, N. H. Damrauer and D. G. Nocera,
Biochim. Biophys. Acta, Bioenerg., 2004, 1655, 13; (c) J. Yano, J. H.
Robblee, P. Pushkar, M. A. Marcus, J. Bendix, J. M. Workman, T. J.
Collins, E. I. Solomon, S. De Beer George and V. K. Yachandra, J. Am.
Chem. Soc., 2007, 129, 12989; (d) A. S. Borovik, Acc. Chem. Res., 2005,
38, 54.
A controlled potential coulometric experiment at 1.3 V vs. SCE
confirmed a one-electron oxidation process and was monitored by
EPR spectroscopy (see Fig. 3).
3 (a) J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, Chem. Rev.,
2004, 104, 561; (b) R. A. Decre´au, J. P. Collman and A. Hosseini, Chem.
Soc. Rev., 2010, 39, 1291; (c) J. P. Collman, R. A. Decre´au, Y. Yan, J.
Yoon and E. I. Solomon, J. Am. Chem. Soc., 2007, 129, 5794.
4 O. Horner, E. Anxolabe´he`re-Mallart, M.-F. Charlot, L. Tchertanov, J.
Guilhem, T. A. Mattioli, A. Boussac and J.-J. Girerd, Inorg. Chem.,
1999, 38, 1222.
5 S. El Ghachtouli, B. L. Kaiser, P. Dorlet, R. Guillot, E. Anxolabe´he`re-
Mallart, C. Costentin and A. Aukauloo, Energy Environ. Sci., 2011, 4,
2041.
6 C. E. MacBeth, R. Gupta, K. R. Mitchell-Koch, V. G. Young Jr., G.
H. Lushington, W. H. Thompson, M. P. Hendrich and A. S. Borovik,
J. Am. Chem. Soc., 2004, 126, 2556.
7 R. Gupta, C. E. MacBeth, V. G. Young Jr. and A. S. Borovik, J. Am.
Chem. Soc., 2002, 124, 1136.
8 J. Y. Yang and D. G. Nocera, J. Am. Chem. Soc., 2007, 129, 8192.
9 F. Michel, F. Thomas, S. Hamman, C. Philouze, E. Saint-Aman and
J.-L. Pierre, Eur. J. Inorg. Chem., 2006, 3684.
10 F. L. Lindoy, V. G. Meehan and N. Svenstrup, Synthesis, 1998, 1029.
11 S. G. Sreerama, S. Pal and S. Pal, Inorg. Chem. Commun., 2001, 4, 656.
12 Similar metric data were found for the related Mn(II) complex where a
perchlorate molecule is coordinated to the manganese (see ESI†).
13 S. El Ghachtouli, R. Guillot, A. Aukauloo, P. Dorlet, E. Anxolabe´he`re-
Mallart and C. Costentin, Inorg. Chem., submitted.
14 S. Groni, C. Hureau, R. Guillot, G. Blondin, G. Blain and E.
Anxolabe´he`re-Mallart, Inorg. Chem., 2008, 47, 1178.
15 A. J. Bard and L. R. Faulken, Electrochemical Methods, Fundamentals
and applications, John Wiley and Sons, New York, 2001.
16 B. Lassalle-Kaiser, C. Hureau, D. A. Pantazis, Y. Pushkar, R. Guillot, V.
K. Yachandra, J. Yano, F. Neese and E. Anxolabe´he`re-Mallart, Energy
Environ. Sci., 2010, 3, 924.
Fig. 3 EPR spectra recorded in the perpendicular (left panel) and parallel
(right panel) mode for [3](ClO4)2 before (bottom spectra) and after (top
spectra) exhaustive oxidative electrolysis at 1.3 V vs. SCE at 273 K in
acetonitrile.
Before electrolysis, the perpendicular mode EPR spectrum
exhibits large resonances in the 0–300 mT range comparable to
what was observed in the powder (see ESI†) and attributable to
the monouclear Mn(II) complex (the 6-line pattern at g = 2 is due
to free Mn(II) impurities which was estimated to be about 12% of
the total amount of Mn present). Upon exhaustive oxidation, the
EPR signal of the initial Mn(II) complex disappears in favor of a
mixture of Mn(IV) complex detected in perpendicular mode with a
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 1675–1677 | 1677
©