B.S. Singh et al. / Ultrasonics Sonochemistry 20 (2013) 287–293
293
[13] M. Lautens, A. Roy, Synthetic studies of the formation of oxazoles and
isoxazoles from N-acetoacetyl derivatives: scope and limitations, Org. Lett. 2
(2000) 555–557.
[14] M. Ohba, H. Kubo, T. Fujii, H. Ishibashi, M.V. Sargent, D. Arbain, Synthesis and
absolute configuration of (ꢁ)-normalindine, Tetrahedron Lett. 38 (1997)
6697–6700.
[27] Atul.R. Gholap, K. Venkatesan, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Ionic liquid
promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin-2-
(1H)-ones at ambient temperature under ultrasound irradiation, Green Chem.
6 (2004) 147–150.
[28] D. Zhao, Y. Liao, Z. Zhang, Toxicity of ionic liquids, Clean 35 (2007) 42–
48.
[15] J. Sisko, A.J. Kassick, M. Mellinger, J.J. Filan, A. Allen, M.A. Olsen, An
investigation of imidazole and oxazole syntheses using aryl-substituted
TosMIC reagents, J. Org. Chem. 65 (2000) 1516–1524.
[29] M. Smiglak, W.M. Reichert, J.D. Holbrey, J.S. Wilkes, L. Sun, J.T. Thrasher, K.
Kirichenko, S. Singh, A.R. Katritzky, R.D. Rogers, Combustible ionic liquids by
design: is laboratory safety another ionic liquid myth?, Chem Commun. (2006)
2554–2556.
[16] M.D. Milton, Y. Inada, Y. Nishibayashi, S. Uemura, Ruthenium- and gold-
catalysed sequential reactions:
oxazoles from propargylic alcohols and amides, Chem. Commun. (2004) 2712–
2713.
a
straightforward synthesis of substituted
[30] Andrew P. Abbott, Glen Capper, David L. Davies, Raymond K. Rasheed, Vasuki
Tambyrajah, Novel solvent properties of choline chloride/urea mixtures,
Chem. Commun. (2003) 70.
[17] J.C. Lee, In-Goul Song, Mercury(II) p-toluenesulfonate mediated synthesis of
oxazoles under microwave irradiation, Tetrahedron Lett. 41 (2000) 5891–
5894.
[31] A.P. Abbott, T.J. Bell, S. Handa, B. Stoddart, O-acetylation of cellulose and
monosaccharides using a zinc based ionic liquid, Green Chem. 7 (2005) 705–
707.
[18] H. Zang, Y. Zhang, Y. Zang, B.W. Cheng, An efficient ultrasound-promoted
method for the one-pot synthesis of 7,10,11,12-tetrahydrobenzo[c]acridin-
8(9H)-one derivatives, Ultrason. Sonochem. 17 (2010) 495–499.
[19] M.R.P. Heravi, An efficient synthesis of quinolines derivatives promoted by a
room temperature ionic liquid at ambient conditions under ultrasound
irradiation via the tandem addition/annulation reaction of o-aminoaryl
[32] B. Singh, H. Lobo, G. Shankarling, Selective N-alkylation of Aromatic Primary
Amines Catalyzed by Bio-catalyst or deep eutectic solvent, Catal. Lett. 141
(2011) 178–182.
[33] H.R. Lobo, B.S. Singh, G.S. Shankarling, Deep eutectic mixtures and glycerol: a
simple, environmentally benign and efficient catalyst/reaction media for
synthesis of N-aryl phthalimide derivatives, Green Chem. Lett. Rev. (2012),
ketones with a-methylene ketones, Ultrason. Sonochem. 16 (2009) 361–366.
[20] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Phase transformation of
nanostructured titanium dioxide from anatase-to-rutile via combined ultra-
sound assisted sol-gel technique, Ultrason. Sonochem. 17 (2010) 409–415.
[21] R.M. Srivastava, R.A. Filho Neves, C.A. da Silva, A.J. Bortoluzzi, First ultrasound-
mediated one-pot synthesis of N-substituted amides, Ultrason. Sonochem. 16
(2009) 737–742.
[34] T.J. Mason, Practical Sonochemistry. User’s Guide to Applications in Chemistry
and Chemical Engineering, Ellis Horwood, Chichester, 1991.
[35] B.G. Pollet, J.Y. Hihn, T.J. Mason, Sono-electrodeposition (20 and 850 kHz) of
copper in aqueous and deep eutectic solvents, Electrochimica Acta 53 (2008)
4248–4256.
[36] S.H. Kim, S.T. Yang, J. Kim, W.S. Ahn, Sonochemical synthesis of Cu3(BTC)2 in a
deep eutectic mixture of choline chloride/dimethylurea bull, Korean Chem.
Soc. 32 (2011) 2783–2786.
[22] A. Duarte, W. Cunico, C.M.P. Pereira, A.F.C. Flores, R.A. Freitag, G.M. Siqueira,
Ultrasound
mercaptobenzoxa(thia)zoles, Ultrason. Sonochem. 17 (2010) 281–283.
[23] K.J. Jarag, D.V. Pinjari, A.B. Pandit, G.S. Shankarling, Synthesis of chalcone (3-(4-
fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one): advantage of
promoted
synthesis
of
thioesters
from
2-
[37] J.C. Lee, Y.H. Bae, S.K. Chang, Effect of alpha-halogenation of carbonyl
compounds by N-bromosuccinimide and N-chlorosuccinimide, Bull. Korean
Chem. Soc. 24 (2003) 407–408.
sonochemical method over conventional method, Ultrason. Sonochem. 18
(2011) 617–623.
[24] C. Petrier, J.-L. Luche, Synthetic Organic Sonochemistry, in: J.-L. Luche (Ed.),
Plenum Press, New York, 1998, pp. 53–56. Chapter 2.
[38] A.P. Abbott, G. Capper, D.L. Davies, H.L. Munro, R.K. Rasheed, V. Tambyrajah,
Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing
quaternary ammonium salts with functional side chains, Chem. Commun.
(2001) 2010–2011.
[25] B. Toukoniitty, E. Toukoniitty, P. Maki-Arvela, J.-P. Mikkola, T. Salmi, D.
Murzim, P. Yu, J. Kooyman, Effect of ultrasound in enantioselective
hydrogenation of 1-phenyl-1,2-propanedione: comparison of catalyst
activation, solvents and supports, Ultrason. Sonochem. 13 (2006) 68–75.
[26] E. Kowsari, M. Mallakmohammadi, Ultrasound promoted synthesis of
quinolines using basic ionic liquids in aqueous media as a green procedure,
Ultrason. Sonochem. 18 (2011) 447–454.
[39] B.S. Singh, H.R. Lobo, G.S. Shankarling, Choline chloride based eutectic
solvents: magical catalytic system for carbon–carbon bond formation in the
rapid synthesis of b-hydroxy functionalized derivatives, Catal. Comm. 24
(2012) 70–74.
[40] S.J. Connon, Asymmetric catalysis with bifunctional cinchona alkaloid-based
urea and thiourea organocatalysts, Chem. Commun. (2008) 2499–2510.