1108
R. Marín-Barrios et al. / Tetrahedron 68 (2012) 1105e1108
cycloalkenes, but also in monoterpenes and sesquiterpenes, under
mild conditions, employing inexpensive CuCl, and TBPB as an oxi-
dant in the presence of DBU. The conditions have been optimized
by employing the multivariate optimization method called simplex.
The limiting reagent is now the alkene, a fact that guarantees its
applicability in worthy substrates. In addition, the reaction time has
been considerably reduced, taking only 24 h to provide useful
yields.
(m, 2H), 5.66 (dq, J¼4.4, 1.4 Hz, 1H), 4.70 (q, J¼1.6 Hz, 2H), 2.43 (dt,
J¼8.7, 5.6 Hz, 1H), 2.36e2.32 (m, 1H), 2.30 (ddd, J¼4.4, 3.0, 1.6 Hz,
1H), 2.22 (td, J¼5.6, 1.5 Hz, 1H), 2.13 (dtd, J¼8.7, 2.9, 1.4 Hz, 1H), 1.30
(s, 3H), 1.24 (d, J¼8.7 Hz, 1H), 0.88 (s, 3H). 13C NMR (101 MHz,
CDCl3):
d 166.39, 142.96, 132.75, 130.41, 129.50, 128.27, 121.59,
67.45, 43.63, 40.71, 38.07, 31.46, 31.25, 26.11, 21.11. IR (film) nmax
(cmꢀ1): 3034, 2832, 1719, 1451, 1366, 1270, 1176, 1111, 1070, 1026,
800, 711. ½a 2D0
ꢂ
ꢀ28.7 (c 0.072, CHCl3). HR-MS (CIþ): calcd for
Although further work is required, the application to substrates
other than simple cycloalkenes opens the way to the popularization
of this reaction in the field of organic synthesis.
C17H20O2 256.1463, found 256.1461.
4.2.4. Benzoyloxyvalencene (10). Yellow oil. 1H NMR (400 MHz,
CDCl3):
d
8.06 (dd, J¼8.4, 1.4 Hz, 2H), 7.56e7.51 (m, 1H), 7.43 (t,
4. Experimental section
J¼7.5 Hz, 2H), 5.59 (d, J¼5.1 Hz, 1H), 5.38 (ddd, J¼7.0, 4.0, 2.0 Hz,
1H), 4.72e4.71 (m, 2H), 2.37 (tdt, J¼14.1, 4.5, 2.1 Hz, 1H), 2.28 (tt,
J¼12.6, 3.1 Hz, 1H), 2.20 (ddd, J¼14.3, 4.2, 2.6 Hz, 1H), 1.94 (dt,
J¼12.9, 2.8 Hz, 1H), 1.86e1.80 (m, 2H), 1.74 (t, J¼1.0 Hz, 3H),
1.38e1.03 (m, 4H), 0.96 (s, 3H), 0.93 (d, J¼6.6 Hz, 3H). 13C NMR
4.1. General considerations
Reactions were monitored through TLC on commercial silica gel
plates. Visualization of the developed plate was performed by
fluorescence quenching and/or aqueous ceric ammonium molyb-
date/anisaldehyde stains. GC was performed on a PerkineElmer
Clarus GC400 using a PerkineElmer Elite5 column. The commer-
cially available reagents and solvents were used without further
purification. NMR spectra were recorded on a Varian Inova 400. IR
spectra were recorded in a PerkineElmer Spectrum BX2, using NaCl
plates, data are reported in cmꢀ1. Mass spectra were obtained in
a VG Autospec-Q.
(101 MHz, CDCl3):
d 166.25, 150.94, 150.04, 132.59, 131.00, 129.56,
128.18, 117.67, 108.61, 68.45, 44.42, 40.53, 38.15, 35.80, 33.04, 32.44,
32.40, 20.85, 16.85, 15.08. IR (film) nmax (cmꢀ1): 2926, 1718, 1450,
1313, 1269, 1175, 1109, 888, 712. ½a D20
þ148 (c 0.043, CHCl3). HR-MS
ꢂ
(CIþ): calcd for C22H28O2 324.2089, found 324.2085.
Acknowledgements
We are grateful to Junta de Andalucía for the financial support.
ꢀ
R.M.B. acknowledges the Universidad de Cadiz for a fellowship. We
4.2. General procedure for allylic oxidation
ꢀ
thank Dr. Jose Ma Palacios for his guidance with multivariate
optimization, Dr. Juan Antonio Poce for his simplex software, and
Ms. Lindsey Ray for her helpful assistance.
A solution of the copper source in 4 mL of acetonitrile is stirred
and the amino additive was added. Then, the substrate (1 mmol)
and the oxidant agent, TBPB, are added. The yield is determined by
GC analysis using octadecane as internal standard. After 24 h the
reaction is worked up by adding 15 mL of AcOEt and extracted with
10 mL of saturated NH4Cl (ꢁ2). The aqueous layer is then extracted
with 10 mL of dichloromethane (ꢁ2). The organic layers are com-
bined and dried over anhydrous Na2SO4. The solvent is removed
under reduced pressure. The yellow oily crude is purified by column
chromatography on silica gel and semipreparative HPLC.
References and notes
1. Andrus, M. B. In Science of Synthesis, Stereoselective Synthesis Allylic and Benzylic
Oxidation; Georg Thieme Verlag: Stuttgart, Germany, 2011; Vol 3, pp 469e482.
2. Harschneck, T.; Kirsch, S. F. Nachr. Chem. 2010, 58, 36e39.
3. Kharasch, M. S.; Fono, A. J. Org. Chem. 1958, 23, 324e325.
4. Andrus, M. B.; Lashley, J. C. Tetrahedron 2002, 58, 845e866.
5. Eames, J.; Watkinson, W. Angew. Chem., Int. Ed. 2001, 40, 3567e3571.
6. Andrus, M. B.; Zhou, Z. J. Am. Chem. Soc. 2002, 124, 8806e8807.
7. Gokhale, A. S.; Minidis, A. B. E.; Pfaltz, A. Tetrahedron Lett. 1995, 36, 1831e1834.
8. Andrus, M. B.; Argade, A. B.; Chen, X.; Pamment, M. G. Tetrahedron Lett. 1995, 36,
2945e2948.
9. Kawasaki, K.; Tsumura, S.; Katsuki, T. Synlett 1995, 1245e1246.
10. DattaGupta, A.; Singh, V. K. Tetrahedron Lett. 1996, 37, 2633e2636.
11. Ginotra, S. K.; Singh, V. K. Org. Biomol. Chem. 2006, 4, 4370e4374.
12. Andrus, M. B.; Asgari, D. Tetrahedron 2000, 56, 5775e5780.
13. Zhou, J.; Tang, Y. Chem. Soc. Rev. 2005, 34, 664e676.
14. Andrus, M. B.; Chen, X. Tetrahedron 1997, 53, 16229e16240.
15. Tan, Q.; Hayashi, M. Adv. Synth. Catal. 2008, 350, 2639e2644.
16. Le Bras, J.; Muzart, J. J. Mol. Catal. A: Chem. 2002, 185, 113e117.
17. Sekar, G.; DattaGupta, A.; Singh, V. K. J. Org. Chem. 1998, 63, 2961e2967.
18. Malkov, A. V.; Bella, M.; Langer, V.; Kocovsky, P. Org. Lett. 2000, 2, 3047e3049.
19. Lee, W. S.; Kwong, H. L.; Chan, H. L.; Choi, W. W.; Ng, L. Y. Tetrahedron: Asym-
metry 2001, 12, 1007e1013.
4.2.1. 3-Phenylcyclohex-2-enyl benzoate (4). Yellow oil. 1H NMR
(400 MHz, CDCl3):
d
8.00 (dd, J¼8.4, 1.3 Hz, 2H), 7.50e7.44 (m, 1H),
7.39e7.35 (m, 2H), 7.35e7.17 (m, 5H), 6.15 (dt, J¼3.6, 1.7 Hz, 1H),
5.69e5.60 (m, 1H), 2.52 (dddd, J¼6.0, 4.8, 3.5, 1.8 Hz, 1H), 2.36
(dtdd, J¼9.6, 7.5, 3.5, 1.8 Hz, 1H), 2.02e1.77 (m, 4H). 13C NMR
(101 MHz, CDCl3):
d 166.28, 142.27, 141.05, 132.76, 130.73, 129.60,
128.30, 128.25, 127.65, 125.43, 122.30, 69.47, 28.12, 27.41, 19.50. IR
(film) nmax (cmꢀ1): 2938, 1712, 1450, 1316, 1270, 1176, 1111, 1069,
1026, 915, 758, 712. HR-MS (CIþ), calcd for C19H18O2 278.1307,
found 273.1301.
4.2.2. Benzoyloxylimonene (6). Colorless oil. 1H NMR (400 MHz,
20. Bolm, C.; Frison, J. C.; Le Paih, J.; Moessner, C. Tetrahedron Lett. 2004, 45,
5019e5021.
CDCl3):
d
8.08 (dd, J¼8.4, 1.4 Hz, 2H), 7.58e7.53 (m, 1H), 7.47e7.42
21. Ramalingan, B.; Neuburger, M.; Pfaltz, A. Synthesis 2007, 572e582.
22. Hoang, V. D. M.; Reddy, P. A. N.; Kim, T. J. Organometallics 2008, 27, 1026e1027.
23. Sekar, G.; DattaGupta, A.; Singh, V. K. Tetrahedron Lett. 1996, 37, 8435e8436.
24. Le Bras, J.; Muzart, J. Tetrahedron: Asymmetry 2003, 14, 1911e1915.
25. Mayoral, J. A.; Rodríguez-Rodríguez, S.; Salvatella, L. Chem.dEur. J. 2008, 14,
9274e9285.
(m, 2H), 5.86e5.75 (m, 1H), 5.59e5.50 (m, 1H), 4.80e4.68 (m, 2H),
2.49e2.37 (m, 1H), 2.31e2.27 (m, 1H), 2.27e2.22 (m, 1H), 2.11 (ddd,
J¼14.2, 4.1, 2.4 Hz, 1H), 1.99e1.87 (m, 1H), 1.78e1.75 (m, 3H),
1.75e1.73 (m, 3H). 13C NMR (101 MHz, CDCl3):
d 166.30, 148.58,
26. Beckwith, A. L. J.; Zavitsas, A. A. J. Am. Chem. Soc. 1986, 108, 8230e8234.
27. Betteridge, D.; Wade, A. P.; Howard, A. G. Talanta 1985, 32, 709e722.
28. Levina, A.; Muzart, J. Tetrahedron: Asymmetry 1995, 6, 147e156.
29. For a more detailed explanation of the modified simplex method, applied to an
organic reaction, see: Chubb, F. L.; Edward, J. T.; Wong, S. C. J. Org. Chem. 1980,
45, 2315e2320.
132.75, 131.03, 130.66, 129.57, 128.26, 127.88, 109.20, 71.19, 35.99,
33.76, 30.92, 20.85, 20.67. IR (film) nmax (cmꢀ1): 2932, 1714, 1450,
1314, 1268, 1110, 1025, 711. ½a D20
ꢂ
ꢀ8.6 (c 0.025, CHCl3). HR-MS (CIþ):
calcd for C17H20O2 256.1463, found 256.1458.
30. Isolated yields for (R)-limonene (5) and (S)-b-pinene (7) were only around 30%
4.2.3. Benzoyloxypinene (8). Colorless oil. 1H NMR (400 MHz,
due to volatility issues. In the case of valencene (9), a 75% of isolated yield was
CDCl3):
d
8.04 (dd, J¼8.4, 1.4 Hz, 2H), 7.57e7.52 (m, 1H), 7.46e7.40
obtained after recovery of unreacted starting material.