C
S. Loosli et al.
Letter
Synlett
Lester, H. A.; Broadhurst, R. W.; Dougherty, D. A. Nature 2005,
438, 248. (c) Lieblich, S. A.; Fang, K. Y.; Cahn, J. K. B.; Rawson, J.;
LeBon, J.; Ku, H. T.; Tirrell, D. A. J. Am. Chem. Soc. 2017, 139,
8384. (d) Metrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson,
E. K.; Hurtley, A. E.; Miller, S. J. J. Am. Chem. Soc. 2017, 139, 492.
(3) Liu, J.; Wang, L. Synthesis 2017, 49, 960.
NMR (126 MHz, C2Cl4D2, 60 °C): = 172.2, 172.0, 153.6, 137.6,
137.4, 133.5, 133.5, 132.1, 128.1, 128.1, 127.6, 127.5, 127.4,
127.2, 127.1, 126.8, 126.8, 126.1, 125.4, 80.9, 80.8, 79.6, 79.5,
59.8, 59.7, 52.1, 51.6, 39.3, 39.2, 37.7, 36.7, 36.4, 28.4, 28.0, 28.0.
HRMS (ESI+): m/z [M + H]+ calcd C25H34NO4: 412.2482; found:
412.2485.
(4) Lewandowski, B.; Wennemers, H. Curr. Opin. Chem. Biol. 2014,
22, 40.
(4S)- and (4R)-1-[(9H-Fluoren-9-ylmethoxy)carbonyl]-4-(2-
naphthylmethyl)-L-proline (8a); Typical Procedure
(5) (a) Remuzon, P. Tetrahedron 1996, 52, 13803. (b) Pandey, A. K.;
Naduthambi, D.; Thomas, K. M.; Zondlo, N. J. J. Am. Chem. Soc.
2013, 135, 4333.
Prolinate 7a (4.8 g, 11.7 mmol, 1 equiv) was dissolved in a 6 M
soln of HCl in 1,4-dioxane (110 mL), and the mixture was
stirred for 3 h at r.t. The pH was adjusted to 8–9 with sat. aq
NaHCO3, then a soln of FmocCl (3.6 g, 14.0 mmol, 1.2 equiv) in
1,4-dioxane (50 mL) was added, and the mixture was stirred at
r.t. for 2 h. Low-boiling volatiles were removed under reduced
pressure, and EtOAc (50 mL) was added. The solution was acidi-
fied to pH 2–3 with 1 M HCl, and the organic phase was sepa-
rated and extracted with EtOAc (3 × 100 mL). The combined
organic layers were washed with brine, dried (MgSO4), and fil-
tered. All volatiles were removed under reduced pressure, and
the product was purified by column chromatography (silica gel,
0–5% MeOH in CH2Cl2 with 0.1% HCO2H) to give a white
powder: yield: 4.7 g (84%). The diastereoisomers were subse-
quently separated by reverse-phase semipreparative HPLC
[Reprosil-Gold 120 C18, 10 m; 250 × 30 mm column, MeCN
and H2O–MeCN–TFA (100:1:0.1)].
(6) (a) Del Valle, J. R.; Goodman, M. J. Org. Chem. 2003, 68, 3923.
(b) Koskinen, A. M. P.; Helaja, J.; Kumpulainen, E. T. T.; Koivisto,
J.; Mansikkamäki, H.; Rissanen, K. J. Org. Chem. 2005, 70, 6447.
(7) Foletti, C.; Kramer, R. A.; Mauser, H.; Jenal, U.; Bleicher, K. H.;
Wennemers, H. Angew. Chem. Int. Ed. 2018, 57, 7729.
(8) (a) Ezquerra, J.; Pedregal, C.; Yruretagoyena, B.; Rubio, A.;
Carreño, M. C.; Escribano, A.; García Ruano, J. L. J. Org. Chem.
1995, 60, 2925. (b) Rawson, D. J.; Brugier, D.; Harrison, A.;
Hough, J.; Newman, J.; Otterburn, J.; Maw, G. N.; Price, J.;
Thompson, L. R.; Turnpenny, P.; Warren, A. N. Bioorg. Med.
Chem. Lett. 2011, 21, 3771.
(9) Krapcho, J.; Turk, C.; Cushman, D. W.; Powell, J. R.; DeForrest, J.
M.; Spitzmiller, E. R.; Karanewsky, D. S.; Duggan, M.; Rovnyak,
G.; Schwartz, J.; Natarajan, S.; Godfrey, J. D.; Ryono, D. E.;
Neubeck, R.; Atwal, K. S.; Petrillo, E. W. Jr. J. Med. Chem. 1988, 31,
1148.
(4S)-Diastereomer
[]D –40.7 ± 0.5 (c 0.2, MeOH). TLC (silica gel, 2% MeOH in CH2-
Cl2): Rf = 0.56. FTIR (neat): 3051, 2923, 1701, 1421, 1352, 1247,
(10) (a) Herdewijn, P.; Claes, P. J.; Vanderhaeghe, H. Can. J. Chem.
1982, 60, 2903. (b) De Luca, L.; Giacomelli, G.; Porcheddu, A.
Org. Lett. 2001, 3, 3041.
1176, 1122, 1006, 972, 843, 739 cm–1
.
1H NMR (500 MHz, C2Cl4D2, 60 °C): = 7.92–7.79 (m, 3 H; Ar),
7.77–7.60 (m, 3 H; Ar), 7.59–7.44 (m, 4 H; Ar), 7.43–7.21 (m, 5
H; Ar), 4.55–4.41 (m, 2 H; CH2–Fmoc), 4.41–4.28 (m, 1 H; H),
4.28–4.18 (m, 1 H; CH–Fmoc), 3.77–3.52 (m, 1 H; H), 3.25–
3.16 (m, 1 H; H), 3.01–2.79 (m, 2 H; CH2-Naph), 2.57 (hept,
J = 7.7 Hz, 1 H; H), 2.50–2.36 (m, 1 H; H), 2.12–1.93 (m, 1 H;
H). 13C NMR (500 MHz, C2Cl4D2, 60 °C): = 173.2 (CO2H), 156.4
(C=OFmoc), 143.5 (Ar), 141.1 (Ar), 137.0 (Ar), 133.4 (Ar), 132.1
(Ar), 128.2 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.0 (Ar),
126.9 (Ar), 126.7 (Ar), 126.1 (Ar), 125.5 (Ar), 124.8 (Ar), 119.8
(Ar), 67.9 (CH2–Fmoc), 59.4 (C), 52.2 (C), 47.1 (CH–Fmoc),
39.7 (C), 38.8 (CH2–Naph), 34.4 (C). HRMS (ESI+): m/z [M +
H]+ calcd for C31H28NO4: 478.2013; found: 478.2003.
(11) For details, see the Supporting Information.
(12) For the use of the Suzuki reaction to prepare amino acids, see:
(a) Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. Tetrahedron
Lett. 1999, 40, 5263. (b) Sabat, M.; Johnson, C. R. Org. Lett. 2000,
2, 1089. (c) Lu, X.; Xiao, B.; Shang, R.; Liu, L. Chin. Chem. Lett.
2016, 27, 305.
(13) O’Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G.
A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Chem. Eur. J. 2006,
12, 4743.
(14) Ray, L.; Shaikh, M. M.; Ghosh, P. Dalton Trans 2007, 4546.
(15) tert-Butyl (4S/4R)-N-(tert-Butoxycarbonyl)-4-(2-naphthyl-
methyl)-L-prolinate (7a); Typical Procedure
An oven-dried Schlenk flask was charged with methylene deriv-
ative 5 (4.0 g, 14.1 mmol, 1 equiv) under N2. A 0.5 M soln of 9-
BBN in THF (31.0 mL, 15.5 mmol, 1.1 equiv) was added in one
portion, and the solution was stirred vigorously at 60 °C for 6 h.
The mixture was then allowed to cool to r.t. and 5 M aq. KOH
(5.6 mL, 5 M, 28.0 mmol, 2 equiv) was added. The mixture was
stirred for 20 min, then 2-bromonaphthalene (7a; 3.8 g, 18.36
mmol, 1.3 equiv) was added together with PEPPSI (287.7 mg,
423 mol, 0.03 equiv). The mixture was stirred for a further
16 h at r.t., then H2O (120 mL) and EtOAc (120 mL) were added
and the phases were separated. The aqueous phase was
extracted with EtOAc (3 × 120 mL), and the organic layers were
combined, washed with brine, dried (MgSO4), and concentrated.
The resulting yellow–brown oil (9.9 g) was purified by column
chromatography (silica gel, 0–25% EtOAc–hexane) to give a col-
orless oil; yield: 4.8 g (83%).
(4R)-Diastereomer
[]D –10.8 ± 0.3 (c 0.2, MeOH). TLC (silica gel, 2% MeOH in CH2-
Cl2): Rf = 0.56. FTIR (neat): 3045, 2966, 1700, 1661, 1417, 1351,
1241, 1282, 1122, 1002, 947, 887, 737 cm–1
.
1H NMR (500 MHz, C2Cl4D2, 60 °C): = 7.91–7.80 (m, 3 H; Ar),
7.73 (dd, J = 7.6, 2.9 Hz, 2 H; Ar), 7.62 (s, 1 H; Ar), 7.59–7.48 (m,
4 H; Ar), 7.39 (tt, J = 7.6, 1.4 Hz, 2 H; Ar), 7.35–7.27 (m, 3 H; Ar),
4.56–4.36 (m, 3 H; H, CH2–Fmoc), 4.32–4.19 (m, 1 H; CH–
Fmoc), 3.74–3.49 (m, 1 H; H), 3.31–3.10 (m, 1 H; H), 2.97–
2.80 (m, 2 H; CH2–Naph), 2.80–2.65 (m, 1 H; H), 2.47–1.88 (m,
2 H; H). 13C NMR (500 MHz, C2Cl4D2, 60 °C): = 173.8 (CO2H),
156.1 (C=OFmoc), 143.5 (Ar), 141.1 (Ar), 136.8 (Ar), 133.4 (Ar),
132.1 (Ar), 128.2 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.0
(Ar), 127.0 (Ar), 126.8 (Ar), 126.1 (Ar), 125.5 (Ar), 124.8 (Ar),
119.82 (Ar), 67.9 (CH2–Fmoc), 59.2 (C), 51.7 (C), 47.1 (CH–
Fmoc), 38.9 (CH2–Naph, C), 34.3 (C). HRMS (ESI+): m/z [M +
H]+ calcd C31H28NO4: 478.2013; found: 478.2003.
1H NMR (500 MHz, C2Cl4D2, 60 °C): = 7.82–7.71 (m, 3 H), 7.59–
7.52 (m, 1 H), 7.48–7.37 (m, 2 H), 7.27 (dd, J = 8.4, 1.7 Hz, 1 H),
4.26–4.02 (m, 1 H), 3.75–3.55 (m, 1 H), 3.14 (dd, J = 10.6, 9.0 Hz,
1 H), 2.89–2.76 (m, 2 H), 2.72–2.44 (m, 1 H), 2.42–1.88 (m, 1 H),
1.63 (ddd, J = 12.8, 9.5, 7.9 Hz, 1 H), 1.51–1.33 (m, 18 H). 13C
(16) Note that the Suzuki reaction is not compatible with the use of
Fmoc-protected amines. The stereochemistry at the stereogenic
centers was retained during the synthesis.
Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–C