isolated yield of 4 (87%) was obtained with an excess of
[Rh(CO)2Cl]2.11
Notes and references
1 (a) N. Kuhn and A. Al-Sheikh, Coord. Chem. Rev., 2005, 249, 829;
(b) Y. Wang and G. H. Robinson, Inorg. Chem., 2011, 50, 12326;
(c) R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking and
G. Bertrand, Science, 2011, 333, 610; (d) Y. Wang, Y. Xie, P. Wei,
R. B. King, H. F. Schaefer III, P. v. R. Schleyer and G. H. Robinson,
Science, 2008, 321, 1069; (e) C. Jones, Chem. Commun., 2001, 2293;
(f) S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones
and A. Stasch, Nat. Chem., 2010, 2, 865; (g) R. S. Ghadwal,
H. W. Roesky, S. Merkel, J. Henn and D. Stalke, Angew. Chem.,
Int. Ed., 2009, 48, 5683; (h) A. C. Filippou, O. Chernov and
G. Schnakenburg, Angew. Chem., Int. Ed., 2009, 48, 5687;
(i) S. Yao, Y. Xiong and M. Driess, Chem.–Eur. J., 2010, 16, 1281;
(j) A. J. Arduengo III, J. C. Calabrese, A. H. Cowley, H. V. Rasika
Dias, J. R. Goerlich, W. J. Marshall and B. Riegel, Inorg. Chem.,
1997, 36, 2151; (k) J. L. Dutton and P. J. Ragogna, Inorg. Chem.,
2009, 48, 1722.
ð1Þ
2 (a) U. Vogel, A. Y. Timoshkin and M. Scheer, Angew. Chem., Int.
Ed., 2001, 40, 4409; (b) P. A. Rupar, M. C. Jennings, P. J. Ragogna
and K. M. Baines, Organometallics, 2007, 26, 4109; (c) Y. Xiong,
S. Yao and M. Driess, Angew. Chem., Int. Ed., 2010, 49, 6642;
(d) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Propper,
¨
B. Dittrich, S. Klein and G. Frenking, J. Am. Chem. Soc., 2011,
133, 17552.
3 (a) K. C. Thimer, S. M. I. Al-Rafia, M. J. Ferguson, R. McDonald
and E. Rivard, Chem. Commun., 2009, 7119; (b) S. M. I. Al-Rafia,
A. C. Malcolm, S. K. Liew, M. J. Ferguson and E. Rivard, J. Am.
Chem. Soc., 2011, 133, 777; (c) S. M. I. Al-Rafia, A. C. Malcolm,
S. K. Liew, M. J. Ferguson, R. McDonald and E. Rivard, Chem.
Commun., 2011, 47, 6987; (d) S. M. I. Al-Rafia, A. C. Malcolm,
R. McDonald, M. J. Ferguson and E. Rivard, Angew. Chem., Int.
Ed., 2011, 50, 8354; (e) S. Inoue and M. Driess, Angew. Chem., Int.
Ed., 2011, 50, 5614.
4 For recent examples of Si(II) monohydrides, see: (a) S.-H. Zhang,
H.-X. Yeong, H.-W. Xi, K. H. Lim and C.-W. So, Chem.–Eur. J.,
2010, 16, 10250; (b) A. Jana, D. Leusser, I. Objartel, H. W. Roesky
and D. Stalke, Dalton Trans., 2011, 40, 5458; (c) R. Rodriguez,
D. Gau, Y. Contie, T. Kato, N. Saffon-Merceron and
A. Baceiredo, Angew. Chem., Int. Ed., 2011, 50, 11492;
Fig. 3 Thermal ellipsoid plot (30% probability) of the trans-
[(IPrꢀSiCl2)2Rh(CO)2]+ cation in 4. IPr-bound hydrogen atoms and
CH2Cl2 solvent are omitted for clarity. Selected bond lengths [A] and
angles [1]: Rh(1)–Si 2.3605(8), Rh(1)–C(1) 1.901(4), C(2)–Si
1.939(3); C(2)–Si–Rh(1) 123.41(10), Cl(1)–Si–Cl(2) 102.56(5),
Si–Rh(1)–C(1) 90.94(11), Si–Rh(1)–Si(A) 180.0.
(d) M. Stoelzel, C. Prasang, S. Inoue, S. Enthaler and M. Driess,
¨
The structure of 4 was verified by single-crystal X-ray
crystallography (Fig. 3),11 while 13C{1H} NMR spectroscopic
studies revealed the retention of two distinct carbonyl environ-
ments in solution.14 The ligation of two IPrꢀSiCl2 units to a
sole Rh center in 4 is a likely consequence of the reduced
proximal bulk at the donor site of this 2eꢁ ligand relative to
NHCs (which readily give the monosubstituted complexes,
[(NHC)Rh(CO)2Cl]).13 Unfortunately our attempts to generate
a Rh-bound silylene complex featuring reactive Si–H groups
via the reaction of 4 with various hydride sources exclusively led
to the formation of metallic Rh and complicated product
mixtures. The synthesis of a complex with stable Si(II)–Rh
interactions represents a new addition to the growing family of
metallosilylenes,7,15 and future work will focus on investigating
other methods to deliver SiH2 functionality onto metal centers.
In summary, we have uncovered an efficient synthetic pathway
for the preparation of stable donor–acceptor adducts of SiH2.
Future work will involve an in-depth study of the reactivity of the
IPrꢀSiH2 array including the exploration of potential Si–H bond
activation processes. These studies could add valuable insight
into the nature of metal-assisted catalysis involving silanes.4c,7
This work has been supported by NSERC of Canada
(E.R. and A.C.M.), the Canada Foundation for Innovation,
Alberta Innovates (E.R. and S.M.I.A.) and Suncor Energy
Inc. (Petro-Canada Young Innovator Award to E.R.).
Angew. Chem., Int. Ed., 2011, DOI: 10.1002/anie.201105722.
5 (a) W. Petz, Chem. Rev., 1986, 86, 1019; (b) Y. Mizuhata,
T. Sasamori and N. Tokitoh, Chem. Rev., 2009, 109, 3479;
(c) M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell,
A. J. Millevolte, M. Denk and R. West, J. Am. Chem. Soc.,
1998, 120, 12714 and references therein.
6 J. M. Jasinski and S. M. Gates, Acc. Chem. Res., 1991, 24, 9.
7 (a) R. Waterman, P. G. Hayes and T. D. Tilley, Acc. Chem. Res.,
2007, 40, 712; (b) C. Zybill and G. Muller, Angew. Chem., Int. Ed.
¨
Engl., 1987, 26, 669; (c) D. G. Gusev, F.-G. Fontaine, A. J. Lough
and D. Zargarian, Angew. Chem., Int. Ed., 2003, 42, 216;
(d) M. Ochiai, H. Hashimoto and H. Tobita, Angew. Chem., Int.
Ed., 2007, 46, 8192.
8 M. Y. Abrahim, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer III, P. v.
R. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2011,
133, 8874.
9 R. Azhakar, G. Tavcar, H. W. Roesky, J. Hey and D. Stalke, Eur.
J. Inorg. Chem., 2011, 475.
10 R. J. Baker, A. J. Davies, C. Jones and M. Kloth, J. Organomet.
Chem., 2002, 656, 203. The direct reaction between IPrꢀSiCl2 and
Li[AlH4] also gave IPrꢀAlH3 as the major product.
11 See the ESIz for full details.
12 N. Metzler and M. Denk, Chem. Commun., 1996, 2657.
13 D. M. Khramov, V. M. Lynch and C. W. Bielawski, Organometallics,
2007, 26, 6042.
14 (a) M. A. Garralda and L. Ibarlucea, J. Organomet. Chem., 1986,
311, 225; (b) J. J. Kim and H. Alper, Chem. Commun., 2005, 3059.
15 (a) R. S. Ghadwal, R. Azhakar, K. Propper, J. J. Holstein, B. Dittrich
¨
and H. W. Roesky, Inorg. Chem., 2011, 50, 358; (b) J. Li, S. Merkel,
J. Henn, K. Meindl, A. Doring, H. W. Roesky, R. S. Ghadwal and
¨
D. Stalke, Inorg. Chem., 2010, 49, 775.
c
1310 Chem. Commun., 2012, 48, 1308–1310
This journal is The Royal Society of Chemistry 2012