Journal of the American Chemical Society
Communication
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthesis and characterization of dyads 1 and 2, simulation of
ESR spectra, demetalation process of dyads 2 and 2N, and DFT
calculation results for dyads 2 and 2N. This material is available
AUTHOR INFORMATION
■
Corresponding Author
Figure 5. ESR spectra of (a) an N@C60/CuTPP mixture (molar ratio
1:1) and (b) a dyad 2N sample at (I) 4.1 × 10−3 M, (II) 1.6 × 10−3 M,
and (III) 8.0 × 10−4 M. Measurements were taken at room
temperature in CS2, and the parameters were set to best demonstrate
the signal of N@C60.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
However, for dyad 2N, no ESR signal of N@C60 was observed
at any of the experimental concentrations (Figure 5b). Since
the intermolecular dipolar coupling is negligible in samples with
low concentrations (e.g., 8.0 × 10−4 M), we deduce that the
intramolecular dipolar coupling plays the dominant role in the
suppression of N@C60 signal.
We acknowledge funding from EPSRC (EP/F028806/01), the
European Commission (FP7-REGPOT-2008-1, Project BIO-
SOLENUTI 229927), and the Royal Society. G.L. was
supported by the China Oxford Scholarship Fund, the William
Louey Educational Fund, and a Graduate Scholarship from St
Anne’s College, Oxford. We thank Dr. Nick Rees at University
of Oxford for the acquisition of NMR spectra, Dr. Maria del
Carmen Gimenez-Lopez at Nottingham University for the
acquisition of mass spectra, and the Oxford Supercomputing
Centre for the provision of computing services. We also thank
Dr. Steven D. Karlen for help with the synthesis of the
porphyrin−aldehyde.
To calculate the intramolecular dipolar coupling strength, we
used a distance of 1.26 nm between the two radical centers,
which was determined on the basis of the optimized geometry
of dyad 2, assuming that the nitrogen atom occupies the center
of the fullerene cage.25 The coupling strength (Ddip) was
therefore found to be 2.7 × 107 Hz following the classical point-
dipole approximation. Because the spin−lattice relaxation rate
of the copper ion in solution (1 × 109 to 3.3 × 109 Hz)28 is
higher than Ddip, the main consequence of dipolar coupling is
expected to be line width broadening rather than any AB
splitting pattern.29,30 Furthermore, the molecular tumbling rate
of 2.8 × 109 Hz for dyad 2N in CS2, which falls in the
intermediate molecular motion regime, cannot effectively
counteract the line width broadening effect. In view of the
extremely narrow line width of N@C60 (<9 kHz),2 the
broadening effect should dramatically reduce the signal
amplitude of N@C60. Such a decrease in signal amplitude, as
well as the low endohedral nitrogen percentage in the dyad,
could explain the disappearance of the N@C60 signal in the
ESR spectrum of the dyad 2N sample.
In summary, two dyads of N@C60 and porphyrin have been
synthesized. The free-base porphyrin imposes a negligible effect
on N@C60 in dyad 1N. In the two-radical-center dyad 2N, the
ESR signal of N@C60 disappears. The concentration depend-
ence demonstrated strong intramolecular dipolar coupling
between the two radicals, and the dipolar coupling strength
was calculated to be 27.0 MHz. The line width broadening and
amplitude decrease resulting from dipolar coupling explain the
suppression of the ESR signal of N@C60 in dyad 2N. Removal
of the copper ion from the metalloporphyrin moiety, which led
to recovery of approximately 82% of the N@C60 signal, proved
the existence of dyad 2N in the sample. The demetalation,
which changed the two-radical-center system (dyad 2N) into a
single-radical system (dyad 1N), provides a strategy for
switching spin states on and off. This may have applications
in molecular spintronics devices. Additionally, these dyads may
provide a system in which the electron spins of N@C60 interact
with the electron pair resulting from photon-induced charge
separation in photoactive adducts.
REFERENCES
■
(1) Harneit, W. Phys. Rev. A 2002, 65, No. 032322.
(2) Benjamin, S. C.; Ardavan, A.; Briggs, G. A. D.; Britz, D. A.;
Gunlycke, D.; Jefferson, J.; Jones, M. A. G.; Leigh, D. F.; Lovett, B. W.;
Khlobystov, A. N.; Lyon, S. A.; Morton, J. J. L.; Porfyrakis, K.;
Sambrook, M. R.; Tyryshkin, A. M. J. Phys.: Condens. Matter 2006, 18,
S867.
(3) Murphy, T. A.; Pawlik, T.; Weidinger, A.; Hohne, M.; Alcala, R.;
Spaeth, J. M. Phys. Rev. Lett. 1996, 77, 1075.
(4) Jakes, P.; Dinse, K. P.; Meyer, C.; Harneit, W.; Weidinger, A.
Phys. Chem. Chem. Phys. 2003, 5, 4080.
(5) Kanai, M.; Porfyrakis, K.; Briggs, G. A. D.; Dennis, T. J. S. Chem.
Commun. 2004, 210.
(6) Nikawa, H.; Araki, Y.; Slanina, Z.; Tsuchiya, T.; Akasaka, T.;
Wada, T.; Ito, O.; Dinse, K. P.; Ata, M.; Kato, T.; Nagase, S. Chem.
Commun. 2010, 46, 631.
(7) Morton, J. J. L.; Tyryshkin, A. M.; Ardavan, A.; Porfyrakis, K.;
Lyon, S. A.; Briggs, G. A. D. J. Chem. Phys. 2006, 124, No. 014508.
(8) Morton, J. J. L.; Tyryshkin, A. M.; Ardavan, A.; Porfyrakis, K.;
Lyon, S. A.; Briggs, G. A. D. Phys. Rev. Lett. 2005, 95, No. 200501.
(9) Brown, R. M.; Tyryshkin, A. M.; Porfyrakis, K.; Gauger, E. M.;
Lovett, B. W.; Ardavan, A.; Lyon, S. A.; Briggs, G. A. D.; Morton, J. J.
L. Phys. Rev. Lett. 2011, 106, No. 110504.
(10) Goedde, B.; Waiblinger, M.; Jakes, P.; Weiden, N.; Dinse, K. P.;
Weidinger, A. Chem. Phys. Lett. 2001, 334, 12.
(11) Hormann, F.; Hirsch, A.; Porfyrakis, K.; Briggs, G. A. D. Eur. J.
Org. Chem. 2011, 117.
(12) Zhang, J.; Porfyrakis, K.; Morton, J. J. L.; Sambrook, M. R.;
Harmer, J.; Xiao, L.; Ardavan, A.; Briggs, G. A. D. J. Phys. Chem. C
2008, 112, 2802.
(13) Farrington, B. J.; Jevric, M.; Rance, G. A.; Ardavan, A.;
Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. Angew. Chem., Int.
Ed. 2012, DOI: 10.1002/anie.201107490.
(14) Ohkubo, K.; Kotani, H.; Shao, J. G.; Ou, Z. P.; Kadish, K. M.; Li,
G. L.; Pandey, R. K.; Fujitsuka, M.; Ito, O.; Imahori, H.; Fukuzumi, S.
Angew. Chem., Int. Ed. 2004, 43, 853.
1940
dx.doi.org/10.1021/ja209763u | J. Am. Chem.Soc. 2012, 134, 1938−1941