B. Findlay et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1499–1503
1503
250-fold from Staphylococcus aureus to MRSA. The bacterial strain’s
resistance is likely due to the presence of neomycin-modifying en-
zymes that modify the drug, blocking effective binding to RNA or
decreasing the drug’s intracellular concentration.5 The presence
of a large hydrophobic moiety in compounds 9–11 likely prevents
successful binding to the inactivating enzymes, leading to
sustained activity. When we examine the conjugates created with
the smaller chloroxylenol moiety we see that they show
the expected decrease in activity against MRSA, suggesting the sin-
gle aromatic ring lacks the bulk required to prevent enzyme
interactions.
The increased activity of conjugates 9–11 against the two
strains of P. aeruginosa is somewhat more difficult to explain. All
three compounds were roughly fourfold more active than neomy-
cin sulfate, but while P. aeruginosa does possess inactivating en-
zymes, most of its drug resistance stems from the expression of
efflux pumps.5,7 A triclosan-specific interaction is unlikely, due to
the presence of a non-susceptible analogue of FabI, FabV,26 and
the inferences made by examining the activity of conjugates 8
and 9 against E. coli (vide supra). One possible explanation is that
attaching the hydrophobic phenolics to neomycin has increased
the drugs diffusion into the cell, partially overcoming the effect
of the efflux pumps. This hypothesis fits well with the reduced effi-
cacy of conjugates 9–11 against P. aeruginosa in the presence of
BSA, as we would expect the hydrophobic protein to reduce the
concentration of free conjugate outside of the cell, slowing diffu-
sion and aiding efflux. The effect of efflux pumps and permeability
could be further characterized using strains of P. aeruginosa with
reduced efflux, but the relatively low activity of the conjugates
may complicate matters.
Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Canadian Foundation for Innovation (CFI).
Supplementary data
Supplementary data (experimental details) associated with this
article can be found, in the online version, at doi:10.1016/
References and notes
1. Arias, C. A.; Murray, B. E. N. Eng. J. Med. 2009, 360, 439.
2. Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat. Rev. Drug Disc.
2007, 6, 29.
3. Vatopoulos, A. C.; Kalapothaki, V.; Legakis, N. J. Emerg. Infect. Dis. 1999, 5, 471.
4. Lowy, F. D. J. Clin. Invest. 2003, 111, 1265.
5. Wright, G. D. Nat. Rev. Microbiol. 2007, 5, 175.
6. Mulvey, M. R.; Simor, A. E. CMAJ 2009, 180, 408.
7. Li, X. Z.; Nikaido, H. Drugs 2004, 64, 159.
8. Bera, S.; Zhanel, G. G.; Schweizer, F. J. Antimicrob. Chemother. 2010.
9. Bera, S.; Zhanel, G. G.; Schweizer, F. J. Med. Chem. 2010.
10. Bera, S.; Zhanel, G. G.; Schweizer, F. Bioorg. Med. Chem. Lett. 2010, 20, 3031.
11. Bera, S.; Zhanel, G. G.; Schweizer, F. J. Med. Chem. 2008, 51, 6160.
12. Findlay, B.; Zhanel, G. G.; Schweizer, F. Antimicrob. Agents Chemother. 2010, 54,
4049.
13. Hanessian, S.; Pachamuthu, K.; Szychowski, J.; Giguere, A.; Swayze, E. E.;
Migawa, M. T.; Francois, B.; Kondo, J.; Westhof, E. Bioorg. Med. Chem. Lett. 2010,
20, 7097.
14. Zhang, J.; Chiang, F. I.; Wu, L.; Czyryca, P. G.; Li, D.; Chang, C. W. J. Med. Chem.
2008, 51, 7563.
15. Ouberai, M.; El Garch, F.; Bussiere, A.; Riou, M.; Alsteens, D.; Lins, L.; Baussanne,
I.; Dufrene, Y. F.; Brasseur, R.; Decout, J. L.; Mingeot-Leclercq, M. P. Biochim.
Biophys. Acta 2011, 1808, 1716.
16. Baussanne, I.; Bussiere, A.; Halder, S.; Ganem-Elbaz, C.; Ouberai, M.; Riou, M.;
Paris, J. M.; Ennifar, E.; Mingeot-Leclercq, M. P.; Decout, J. L. J. Med. Chem. 2010,
53, 119.
17. Marr, A. K.; Gooderham, W. J.; Hancock, R. E. Curr. Opin. Pharmacol. 2006, 6, 468.
18. Rotem, S.; Mor, A. Biochim. Biophys. Acta 2008, 1788, 1582.
19. Svenson, J.; Brandsdal, B. O.; Stensen, W.; Svendsen, J. S. J. Med. Chem. 2007, 50,
3334.
20. McDonnell, G.; Russell, A. D. Clin. Microbiol. Rev. 1999, 12, 147.
21. Pokrovskaya, V.; Belakhov, V.; Hainrichson, M.; Yaron, S.; Baasov, T. J. Med.
Chem. 2009, 52, 2243.
22. Waring, M. J. Bioorg. Med. Chem. Lett. 2009, 19, 2844.
23. Hancock, R. E.; Bellido, F. J. Antimicrob. Chemother. 1992, 29, 235.
24. Schroeder, R.; Waldsich, C.; Wank, H. EMBO J. 2000, 19, 1.
25. Chen, Y.; Guarnieri, M. T.; Vasil, A. I.; Vasil, M. L.; Mant, C. T.; Hodges, R. S.
Antimicrob. Agents Chemother. 2007, 51, 1398.
26. Zhu, L.; Lin, J.; Ma, J.; Cronan, J. E.; Wang, H. Antimicrob. Agents Chemother.
2010, 54, 689.
27. Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.
28. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2004, 2001, 40.
29. Dickschat, J. S.; Reichenbach, H.; Wagner-Döbler, I.; Schulz, S. Eur. J. Org. Chem.
2005, 2005, 4141.
In conclusion, we have produced six novel aminoglycoside–
phenolic conjugates, in order to test the viability of combining
known hydrophobic drugs and aminoglycosides to create com-
pounds with an emergent activity similar to that of the cationic
antibacterial peptides and cationic detergents. In general the con-
jugates displayed improved activity against neomycin sulfate resis-
tant bacteria and slightly reduced activity against neomycin
susceptible strains. For several conjugates activity against MRSA
was found comparable to that against S. aureus, while activity
against P. aeruginosa was moderately improved. Unlike previous
work with analogues of CAs like cationic detergents and amphi-
philic aminoglycosides,8,11,12 our most active compounds were
not appreciably hemolytic, and activity was retained in the pres-
ence of BSA. Work is currently in progress to optimize the antimi-
crobial activity of non-hemolytic neomycin phenol conjugates and
to explore the likelihood of resistance development.
30. Boer, J.; Blount, K. F.; Luedtke, N. W.; Elson-Schwab, L.; Tor, Y. Angew. Chem., Int.
Ed. 2005, 44, 927.
31. Hanessian, S.; Masse, R.; Capmeau, M. L. J. Antibiot. (Tokyo) 1977, 30, 893.
32. Zhanel, G. G.; DeCorby, M.; Laing, N.; Weshnoweski, B.; Vashisht, R.; Tailor, F.;
Nichol, K. A.; Wierzbowski, A.; Baudry, P. J.; Karlowsky, J. A.; Lagace-Wiens, P.;
Walkty, A.; McCracken, M.; Mulvey, M. R.; Johnson, J.; Hoban, D. J.Canadian
Antimicrobial Resistance Alliance (CARA) Antimicrob. Agents Chemother. 2008,
52, 1430.
33. Zhanel, G. G.; Adam, H. J.; Low, D. E.; Blondeau, J.; Decorby, M.; Karlowsky, J. A.;
Weshnoweski, B.; Vashisht, R.; Wierzbowski, A.; Hoban, D. J.Canadian
Antimicrobial Resistance Alliance (CARA) Microbiol. Infect. Dis. 2011, 69, 291.
34. Stewart, M. J.; Parikh, S.; Xiao, G.; Tonge, P. J.; Kisker, C. J. Mol. Biol. 1999, 290,
859.
Acknowledgments
We are indebted to Dr. E. Lattová for her assistance with high
resolution mass spectrometry, to N. Liang for aid in hemolytic
and microbial testing and to L.K. Freeman for helpful discussions.
This research was supported by the Canadian Institutes of Health
Research (CIHR), Manitoba Health Research Council (MHRC),