C–C Bond Formation Assisted by Surface-Condensed Electrodes
small amount of 1.0 m LPC/NM electrolyte solution (2–5 mL), in
which carbon felt (CF) electrodes (10 mmϫ10 mm) were soaked
by using an undivided reaction cell capped with a septum. Electrol-
ysis was performed at 1.2 V (vs. Ag/AgCl), which was measured by
cyclic voltammetry with the use of a glassy carbon working elec-
trode, a platinum wire counter electrode, and a Ag/AgCl reference
electrode. After the electrolysis (1–3 F/mol), the reaction mixture
was poured into EtOAc, and the EtOAc solution was successively
washed with brine. The organic layer was dried with anhydrous
MgSO4. After filtration and evaporation under reduced pressure,
the residue was purified by silica gel column chromatography (n-
hexane/EtOAc) to give products. Partition ratios in the multiphase
reaction solution were determined by NMR, based on internal
standards.
Table 2. Electron-transfer-induced intermolecular [2+2] cycload-
dition reaction between 1-(prop-1-en-1-yloxy)-4-propylbenzene (1)
and hex-5-en-1-ol (4) with the use of surface-condensed electrodes.
Reaction partner 4
Yield [%]
[equiv.]
Conventional[a]
Surface condensed[b]
20
5
2
72
17
14
95
97
80 (96)
Supporting Information (see footnote on the first page of this arti-
cle): General information, characterization data, and copies of the
1H NMR and 13C NMR spectra of new compounds.
[a] Yield using monophasic electrolysis. [b] Yield using multiphasic
electrolysis (based on consumed starting material).
of 1. The corresponding cycloadducts 7 and 9 were ob-
tained in good yields as diastereomeric mixtures, respec-
tively, even in the presence of relatively small amounts
(5 mol equiv.) of 6 or 8.
Acknowledgments
This work was partially supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.
Table 3. Electron-transfer-induced intermolecular [2+2] cycload-
dition reaction between 1-(prop-1-en-1-yloxy)-4-propylbenzene (1)
and hex-5-en-2-one (6) or but-3-en-1-yl acetate (8) with the use of
surface-condensed electrodes.
[1] a) Y. Tomida, A. Nagaki, J. Yoshida, J. Am. Chem. Soc. 2011,
133, 3744–3747; b) A. Nagaki, A. Kenmoku, Y. Moriwaki, A.
Hayashi, J. Yoshida, Angew. Chem. Int. Ed. 2010, 49, 7543–
7547; c) P. J. Nieuwland, K. Koch, N. van Harskamp, R.
Wehrens, J. C. M. van Hest, F. P. J. T. Rutjes, Chem. Asian J.
2010, 5, 799–805; d) J. Yoshida, A. Nagaki, T. Yamada, Chem.
Eur. J. 2008, 14, 7450–7459; e) J. Yoshida, Chem. Commun.
2005, 4509–4516.
[2] a) S. Mozharov, A. Nordon, D. Littlejohn, C. Wiles, P. Watts,
P. Dallin, J. M. Girkin, J. Am. Chem. Soc. 2011, 133, 3601–
3608; b) Y. S. M. Vaske, M. E. Mahoney, J. P. Konopelski,
D. L. Rogow, W. J. McDonald, J. Am. Chem. Soc. 2010, 132,
11379–11385; c) D. Horii, T. Fuchigami, M. Atobe, J. Am.
Chem. Soc. 2007, 129, 11692–11693; d) K. Saito, K. Ueoka, K.
Matsumoto, S. Suga, T. Nokami, J. Yoshida, Angew. Chem.
Int. Ed. 2011, 50, 5153–5156; e) A. Sniady, M. W. Bedore, T. F.
Jamison, Angew. Chem. Int. Ed. 2011, 50, 2155–2158; f) J. R.
Naber, S. L. Buchwald, Angew. Chem. Int. Ed. 2010, 49, 9469–
9474; g) P. P. Lange, L. J. Gooßen, P. Podmore, T. Underwood,
N. Sciammetta, Chem. Commun. 2011, 47, 3628–3630; h) A. G.
O’Brien, F. Lévesque, P. H. Seeberger, Chem. Commun. 2011,
47, 2688–2690; i) F. Amemiya, K. Fuse, T. Fuchigami, M.
Atobe, Chem. Commun. 2010, 46, 2730–2732.
[3] a) T. Murase, S. Horiuchi, M. Fujita, J. Am. Chem. Soc. 2010,
132, 2866–2867; b) Y. Nishioka, T. Yamaguchi, M. Kawano,
M. Fujita, J. Am. Chem. Soc. 2008, 130, 8160–8161; c) K. Ike-
moto, Y. Inokuma, M. Fujita, Angew. Chem. Int. Ed. 2010,
49, 5750–5752; d) M. Yoshizawa, J. K. Klosterman, M. Fujita,
Angew. Chem. 2009, 121, 3470; Angew. Chem. Int. Ed. 2009,
48, 3418–3438; e) T. Iwasawa, R. J. Hooley, J. Rebek Jr., Sci-
ence 2007, 317, 493–496; f) M. D. Pluth, R. G. Bergman, K. N.
Raymond, Science 2007, 316, 85–88; g) D. Fiedler, D. H.
Leung, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2005,
38, 349–358; h) F. Hof, S. L. Craig, C. Nuckolls, J. Rebek Jr.,
Angew. Chem. 2002, 114, 1556; Angew. Chem. Int. Ed. 2002,
41, 1488–1508; i) D. L. Caulder, K. N. Raymond, Acc. Chem.
Res. 1999, 32, 975–982; j) J. Kang, J. Rebek Jr., Nature 1997,
385, 50–52.
Reaction partner
Yield [%]
Conventional[a]
Surface condensed[b]
6 (R = COMe)
8 (R = OCOMe)
35
28
65 (77)
65 (70)
[a] Yield using monophasic electrolysis. [b] Yield using multiphasic
electrolysis (based on consumed starting material).
Conclusions
We have demonstrated the concept of surface-condensed
electrodes that enables efficient intermolecular carbon–car-
bon bond-formation reactions. Reaction partners were non-
covalently condensed at the electrode surfaces, which could
effectively trap transient radical cation intermediates gener-
ated at the electrodes to offer opportunities for rapid inter-
molecular reactions. The concept of surface-condensed elec-
trodes would be a significant aid for directing intermo-
lecular reactions.
[4] a) K. Manabe, S. Iimura, X.-M. Sun, S. Kobayashi, J. Am.
Chem. Soc. 2002, 124, 11971–11978; b) K. Manabe, X.-M. Sun,
S. Kobayashi, J. Am. Chem. Soc. 2001, 123, 10101–10102; c)
K. Nishimoto, S. Kim, Y. Kitano, M. Tada, K. Chiba, Org.
Experimental Section
General Procedure: A multiphase reaction solution (25 mL) was
formed by combining a large amount of c-Hex (20–23 mL) and a
Eur. J. Org. Chem. 2012, 243–246
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
245