Notes and references
1 (a) E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008,
108, 1517; (b) R. W. Sinkeldam, N. J. Greco and Y. Tor, Chem.
Rev., 2010, 110, 2579; (c) J. L. Liu, Y. Liu, Q. Liu, C. Y. Li,
L. N. Sun and F. Y. Li, J. Am. Chem. Soc., 2011, 133, 15276.
2 (a) J. F. Callan, A. P. de Silva and D. C. Magri, Tetrahedron, 2005,
61, 8551; (b) R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger
and T. Gunnlaugsson, Chem. Soc. Rev., 2010, 39, 3936.
3 (a) X. Chen, S. Nam, G. Kim, N. Song, Y. Jeong, I. Shin,
S. K. Kim, J. Kim, S. Park and J. Yoon, Chem. Commun., 2010,
46, 8953; (b) M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang,
H. Liu, Y. Li, S. Wang and D. Zhu, Org. Lett., 2008, 10, 481;
(c) S. Sreejith, K. P. Divya and A. Ajayaghosh, Angew. Chem., Int.
Ed., 2008, 47, 7883; (d) C. Y. Li, M. X. Yu, Y. Sun, Y. Q. Wu,
C. H. Huang and F. Y. Li, J. Am. Chem. Soc., 2011, 133, 11231;
(e) X. J. Peng, Z. G. Yang, J. Y. Wang, J. L. Fan, Y. X. He,
F. L. Song, B. S. Wang, S. G. Sun, J. L. Qu, J. Qi and M. Yang,
J. Am. Chem. Soc., 2011, 133, 6626.
Fig. 3 Photographic images observed from DCAA–Cu2+ with the
addition of PPi ([DCAA–Cu2+] = 10ꢀ4 M, [PPi] = 5 ꢁ 10ꢀ4 M):
(A) color change; (B) fluorescent emission change irradiated at 365 nm
by a portable fluorescent lamp.
4 (a) H. N. Lee, Z. Xu, S. K. Kim, K. M. K. Swamy, Y. Kim,
S. J. Kim and J. Yoon, J. Am. Chem. Soc., 2007, 129, 3828;
(b) J. K. Heinonen, Biological Role of Inorganic Pyrophosphate,
Kluwer Academic Publishers, Norwell, 2001.
5 (a) R. Villamil-Ramos and A. K. Yatsimirsky, Chem. Commun.,
2011, 47, 2694; (b) M. J. Kim, K. M. K. Swamy, K. M. Lee,
A. R. Jagdale, Y. Kim, S. Kim, K. H. Yoo and J. Yoon, Chem.
Commun., 2009, 7215; (c) H. Wu, C. He, Z. Lin, Y. Liu and
C. Duan, Inorg. Chem., 2009, 48, 408; (d) M. Kruppa and
B. Konig, Chem. Rev., 2006, 106, 3520; F. Schmidt,
¨
¨
S. Stadlbauer and B. Konig, Dalton Trans., 2010, 39, 7250;
(e) D. Ramaiah, P. P. Neelakandan, A. K. Nair and
R. R. Avirah, Chem. Soc. Rev., 2010, 39, 4158; (f) X. M. Huang,
Z. Q. Guo, W. H. Zhu, Y. S. Xie and H. Tian, Chem. Commun.,
2008, 5143.
6 (a) J. Wen, Z. Geng, Y. Yin, Z. Zhang and Z. Wang, Dalton
Trans., 2011, 40, 1984; (b) W. Chen, Y. Xing and Y. Pang, Org.
Lett., 2011, 13, 1362; (c) S. K. Kim, D. H. Lee, J. I. Hong and
J. Yoon, Acc. Chem. Res., 2009, 42, 23.
7 For water soluble PPi sensors: (a) T. Cheng, T. Wang, W. Zhu,
X. Chen, Y. Yang, Y. Xu and X. Qian, Org. Lett., 2011, 13, 3656;
(b) H. J. Kim, J. H. Lee and J. I. Hong, Tetrahedron Lett., 2011,
52, 4944; (c) C. R. Lohani, J. M. Kim, S. Y. Chung, J. Yoon and
K. Lee, Analyst, 2010, 135, 2079; (d) X. Zhao and K. S. Schanze,
Chem. Commun., 2010, 46, 6075; (e) B. Gruber, S. Stadlbauer,
Fig. 4 Confocal fluorescence images in KB cells: Top, (A–C) cells
incubated with DCAA–Cu2+ (10 mM) for 0.5 h. Bottom, (D–F) cells
incubated with DCAA–Cu2+ (10 mM) for 0.5 h, then K4P2O7 (30 mM)
for 0.5 h. Emission was collected at 630–730 nm upon excitation at
405 nm. Bright field (A and D), fluorescence (B and E) and overlap
field (C and F).
was observed (Fig. 4D–F). The overlay of fluorescence and
bright-field images reveals that the fluorescence signals are
localized in the perinuclear area of the cytosol, indicating a
subcellular distribution of PPi anion and good cell membrane
permeability of DCAA–Cu2+. Moreover, from the bioimaging
of cells (Fig. 4A–C), we found that DCAA–Cu2+ did not show
fluorescent enhancement, suggesting that the disturbance of
peptide and amino acids in the cell environment can be
neglected. This cell experiment demonstrated the potential
application of DCAA–Cu2+ for the imaging of PPi in
living cells.
In conclusion, a novel fluorescent sensor DCAA–Cu2+ was
designed on the basis of a dicyanomethylene-4H-chromene
framework with several merits: (i) detecting PPi anion selec-
tively and sensitively in a pure aqueous physiological system;
(ii) being capable of the maximum signal-to-noise ratio with
the preferable ‘off–on’ sensing mode; and (iii) falling NIR
determining wavelength to get good transmission and low
autofluorescence in biological samples.
A. Spath, S. Weiss, M. Kalinina and B. Konig, Angew. Chem., Int.
¨
Ed., 2010, 49, 7125.
¨
8 (a) E. L. Que and C. J. Chang, J. Am. Chem. Soc., 2006,
128, 15942; (b) K. Varazo, F. Xie, D. Gulledge and Q. Wang,
Tetrahedron Lett., 2008, 49, 5293; (c) N. Kaur and S. Kumar,
Tetrahedron Lett., 2006, 47, 4109; (d) M. Yu, M. Shi, Z. Chen,
F. Li, X. Li, Y. Gao, J. Xu, H. Yang, Z. Zhou, T. Yi and
C. Huang, Chem.–Eur. J., 2008, 14, 6892.
9 X. Meng, M. Z. Zhu, L. Liu and Q. X. Guo, Tetrahedron Lett.,
2006, 47, 1559.
10 Q. W. He, E. W. Miller, A. P. Wong and C. J. Chang, J. Am.
Chem. Soc., 2006, 128, 9316.
11 (a) K. Varazo, F. Xie, D. Gulledge and Q. Wang, Tetrahedron Lett.,
2008, 49, 5293; (b) M. Choi, M. Kim, K. D. Lee, K. N. Han,
I. A. Yoon, H. J. Chung and J. Yoon, Org. Lett., 2001, 3, 3455;
(c) L. X. Wu, Y. R. Dai and G. Marriott, Org. Lett., 2011, 13, 2018.
12 (a) M. Kruppa and B. Konig, Chem. Rev., 2006, 106, 3520;
¨
(b) S. Sun, M. A. Fazal, B. C. Roy and S. Mallik, Org. Lett.,
2000, 2, 911.
13 J. M. Drake, M. L. Lesiecki and D. M. Camaioni, Chem. Phys.
Lett., 1985, 113, 530.
14 (a) D. H. Lee, S. Y. Kim and J. I. Hong, Angew. Chem., Int. Ed.,
2004, 43, 4777; (b) F. Zapata, A. Caballero, A. Espinosa,
A. Tarraga and P. Molina, J. Org. Chem., 2008, 73, 4034;
´
We are grateful for support from NSFC/China, the Oriental
Scholarship, SRFDP 200802510011, the Fundamental
Research Funds for the Central Universities (WK1013002)
and STCSM (10dz2220500).
(c) T. M. Fu, C. Y. Wu, C. C. Cheng, C. R. Yang and
Y. P. Yen, Sens. Actuators, B, 2010, 146, 171.
c
1786 Chem. Commun., 2012, 48, 1784–1786
This journal is The Royal Society of Chemistry 2012