772
L. Naya et al. / Tetrahedron Letters 53 (2012) 769–772
4. (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett.
It is noteworthy that the reaction can be applied to substrates
1998, 39, 2933–2936; (b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett.
1998, 39, 2937–2940; (c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.;
Winters, M. P.; Chan, D. M. T. Tetrahedron Lett. 1998, 39, 2941–2944.
5. (a) Lan, J.; Chen, L.; Yu, X.; You, J.; Xie, R. Chem. Commun. 2004, 188–189; (b)
DalZotto, C.; Michaux, J.; Martinand-Lurin, E.; Campagne, J. Eur. J. Org. Chem.
2010, 3811–3814; (c) Shade, R. E.; Hyde, A. M.; Olsen, J.; Merlic, C. A. J. Am.
Chem. Soc. 2010, 132, 1202–1203; (d) Chernick, E. T.; Ahrens, M. J.; Scheidt, K.
A.; Wasielewski, M. R. J. Org. Chem. 2005, 70, 1486–1489; (e) Collman, J. P.;
Zhong, M.; Zeng, L.; Costanzo, S. J. Org. Chem. 2001, 66, 1528–1531; (f) Petrassi,
H. M.; Sharpless, K. B.; Kelly, J. W. Org. Lett. 2001, 3, 139–142; (g) Antilla, J. C.;
Buchwald, S. L. Org. Lett. 2001, 3, 2077–2079; (h) Moessner, C.; Bolm, C. Org.
Lett. 2005, 7, 2667–2669.
6. For a recent review of Chan–Lam coupling, see: Qiao, J. X.; Lam, P. Y. S. Synthesis
2011, 829–856.
7. Rappoport, Z. In The Chemistry of the Cyclopropyl Group; Wiley: New York, 1995;
Vol. 2,
8. (a) Tsuritani, T.; Strotman, N. A.; Yamamoto, Y.; Kawasaki, M.; Yasuda, N.;
Mase, T. Org. Lett. 2008, 10, 1653–1655; (b) Bénard, S.; Neuville, L.; Zhu, J. J. Org.
Chem. 2008, 73, 6441–6444; (c) Bénard, S.; Neuville, L.; Zhu, J. Chem. Commun.
2010, 46, 3393–3395.
9. (a) González, I.; Mosquera, J.; Guerrero, C.; Rodríguez, R.; Cruces, J. Org. Lett.
2009, 11, 1677–1680; (b) Larrosa, M.; Guerrero, C.; Rodríguez, R.; Cruces, J.
Synlett 2010, 2101–2105.
containing a thioether moiety (entry 12) that proved problematic
in other cross-coupling reactions. Aniline bearing carbonyl groups
were also transformed to the desired products, in moderate yields
for acetyl moiety (entry 13), and low yields for methyl ester (entry
1), although in the last example it can be caused by the location of
the methoxycarbonyl group in ortho position to the amino group.
To summarize, we have developed conditions for a copper-pro-
moted cross-coupling of anilines with trialkylboranes. This new
transformation expands the utility of copper-promoted coupling
reaction to a new type of reagents, not reported before, and com-
plements the use of boronic acid derivatives in the Chan–Lam cou-
pling methodology. The fact that alkyl borane reagents are easily
synthesized in a highly regioselective manner by means of the hyd-
roboration of the corresponding styrenes makes cross-coupling
chemistry using these reagents highly attractive. Efforts to expand
the utility of this reaction for the formal amination of alkenes are
ongoing in our laboratory.
10. (a) Collman, J. P.; Zhong, M. Org. Lett. 2000, 2, 1233–1236; (b) Jouvin, K.;
County, F.; Evano, G. Org. Lett. 2010, 12, 3272–3275; For coupling reactions of
trifluoroborates, see: (c) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 1381–1384;
(d) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 4397–4400; (e) Bolshan, Y.;
Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109–2112; For coupling reactions
of boroxines, see: (f) Zheng, Z.; Wen, J.; Wang, N.; Wu, B.; Yu, X. Beilstein J. Org.
Chem. 2008, 4, 40–46; For coupling reactions of triolborates, see: (g)
Yamamoto, Y.; Takizawa, M.; Yu, X.; Miyaura, N. Angew. Chem., Int. Ed. 2008,
47, 928–931; (h) Yu, X.; Yamamoto, Y.; Miyaura, N. Chem. Asian J. 2008, 3,
1517–1522.
Acknowledgment
We thank the Xunta de Galicia for financing this work through
the INCITE project call (code 10CSA021E).
Supplementary data
11. For reviews see: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (b)
Suzuki, A. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J.,
Eds.; VCH: Weinheim, Germany, 1998; pp 49–97.
12. Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am.
Chem. Soc. 1989, 111, 314–321.
Supplementary data (experimental procedures, analytical
instrumentation and data) associated with this article can be
13. Patrick, G. L. An Introduction to Medicinal Chemistry, Second ed.; Oxford
University Press: Oxford, 2001; For recent synthesis of phenethylamines, see:
(a) Heutling, A.; Pohlki, F.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 2005, 44,
2951–3954; (b) Hamid, M. H. S. A.; Williams, J. M. J. Chem. Commun. 2007, 725–
727; (c) Munro-Leighton, C.; Delp, S. A.; Alsop, N. M.; Blue, E. D.; Gunnoe, T. B.
Chem. Commun. 2008, 111–113; (d) Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N.;
Khalili, D. Tetrahedron 2009, 65, 3893–3899.
14. (a) Negishi, E. A. Handbook of Organopalladium Chemistry for Organic Synthesis;
Wiley-Interscience: New York, 2002; (b) Miyaura, N. Cross-Coupling. Reactions:
A Practical Guide; Springer: New York, 2002; (c) Miyaura, N. Top. Curr. Chem.
2002, 219, 11–59; (d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58,
9633–9695.
15. Brown, H. C.; Tsukamoto, A.; Bigley, D. B. J. Am. Chem. Soc. 1960, 82, 4703–4707.
16. General procedure for the preparation of N-alkylboranes 3: A dioxane solution
of trialkylborane was prepared via hydroboration of styrene with BH3ÁTHF
complex (0.4 equiv) in dioxane at rt for 3 h. In a separate vessel, copper(II)
acetate (454 mg, 2.5 mmol) was added to a solution of aniline (1.0 mmol) and
pyridine (238 mg, 3 mmol) in dioxane (15 mL). The mixture was stirred for
15 min, and the trialkylborane solution in dioxane (1.1 mmol) was added. The
reaction mixture was refluxed until aniline was totally consumed (TLC
analysis, 3–4 h). The reaction mixture was allowed to reach rt, poured into
NH4Cl (60 mL, saturated aqueous solution), and extracted with CH2Cl2 (60 mL).
The organic layer was dried over Na2SO4 (anhydrous), filtered, and
concentrated. The crude residue was purified by flash chromatography on
SiO2 (0?50% EtOAc/hexanes) to afford the N-alkylaniline as colorless oil.
References and notes
1. (a) Negwer, M. Organic-Chemical Drugs and their Synonyms: (An International
Survey), seventh ed.; Akademie GmbH: Berlin, 1994; (b) Montgomery, J. H.
Agrochemicals Desk Reference: Environmental Data; Lewis Publishers: Chelsea,
MI, 1993; (c)The Chemistry of Anilines; Rappoport, Z., Ed.; Wiley-Interscience:
New York, 2007; Vol. 1, (d) Weissermel, d) K.; Arpe, H. J. Industrial Organic
Chemistry; Wiley-VCH: Weinheim, 1997; (e) Lawrence, S. A. Amines: Synthesis
Properties and Applications; Cambridge University Press: Cambridge, 2004.
2. For recent reviews about copper-catalyzed coupling reactions, see: (a) Ley, S.
V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449; (b) Beletskaya, I.
P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596–1636; (c) Evano, G.; Blanchard,
N.; Toumi, M. Chem. Rev. 2008, 108, 3054–3131; (d) Monnier, F.; Taillefer, M.
Angew. Chem., Int. Ed. 2009, 48, 6954–6971; (e) Ma, D.; Cai, Q. Acc. Chem. Soc.
2008, 41, 1450–1460; (f) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res.
2009, 42, 1074–1086.
3. (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998,
31, 805–818; (b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067; (c)
Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131–209; (d) Tasler, S.;
Lipshutz, B. H. J. Org. Chem. 2003, 68, 1190–1199; (e) Zapf, A.; Beller, M.;
Riermeier, T. H. In Transition Metals for Organic Synthesis Bd. 1; Beller, M., Bolm,
C., Eds.; Wiley: Weinheim, 2004. S. 231; (f) Shen, Q.; Shekhar, S.; Stambuli, J. P.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371–1375; (g) Surry, S.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338–6361.